Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[CUDA][HIP] Fix bug in guess local worksize funcs and improve local worksize guessing in HIP adapter #1326

Merged
merged 3 commits into from
Mar 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
40 changes: 12 additions & 28 deletions source/adapters/cuda/enqueue.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -18,6 +18,7 @@

#include <cmath>
#include <cuda.h>
#include <ur/ur.hpp>

ur_result_t enqueueEventsWait(ur_queue_handle_t CommandQueue, CUstream Stream,
uint32_t NumEventsInWaitList,
Expand Down Expand Up @@ -140,12 +141,10 @@ ur_result_t setCuMemAdvise(CUdeviceptr DevPtr, size_t Size,
void guessLocalWorkSize(ur_device_handle_t Device, size_t *ThreadsPerBlock,
const size_t *GlobalWorkSize, const uint32_t WorkDim,
const size_t MaxThreadsPerBlock[3],
ur_kernel_handle_t Kernel, uint32_t LocalSize) {
ur_kernel_handle_t Kernel) {
assert(ThreadsPerBlock != nullptr);
assert(GlobalWorkSize != nullptr);
assert(Kernel != nullptr);
int MinGrid, MaxBlockSize;
size_t MaxBlockDim[3];

// The below assumes a three dimensional range but this is not guaranteed by
// UR.
Expand All @@ -154,33 +153,18 @@ void guessLocalWorkSize(ur_device_handle_t Device, size_t *ThreadsPerBlock,
GlobalSizeNormalized[i] = GlobalWorkSize[i];
}

size_t MaxBlockDim[3];
MaxBlockDim[0] = MaxThreadsPerBlock[0];
MaxBlockDim[1] = Device->getMaxBlockDimY();
MaxBlockDim[2] = Device->getMaxBlockDimZ();

UR_CHECK_ERROR(
cuOccupancyMaxPotentialBlockSize(&MinGrid, &MaxBlockSize, Kernel->get(),
NULL, LocalSize, MaxThreadsPerBlock[0]));

ThreadsPerBlock[2] = std::min(GlobalSizeNormalized[2], MaxBlockDim[2]);
ThreadsPerBlock[1] =
std::min(GlobalSizeNormalized[1],
std::min(MaxBlockSize / ThreadsPerBlock[2], MaxBlockDim[1]));
MaxBlockDim[0] = MaxBlockSize / (ThreadsPerBlock[1] * ThreadsPerBlock[2]);
ThreadsPerBlock[0] = std::min(
MaxThreadsPerBlock[0], std::min(GlobalSizeNormalized[0], MaxBlockDim[0]));

static auto IsPowerOf2 = [](size_t Value) -> bool {
return Value && !(Value & (Value - 1));
};

// Find a local work group size that is a divisor of the global
// work group size to produce uniform work groups.
// Additionally, for best compute utilisation, the local size has
// to be a power of two.
while (0u != (GlobalSizeNormalized[0] % ThreadsPerBlock[0]) ||
!IsPowerOf2(ThreadsPerBlock[0])) {
--ThreadsPerBlock[0];
}
int MinGrid, MaxBlockSize;
UR_CHECK_ERROR(cuOccupancyMaxPotentialBlockSize(
hdelan marked this conversation as resolved.
Show resolved Hide resolved
&MinGrid, &MaxBlockSize, Kernel->get(), NULL, Kernel->getLocalSize(),
MaxThreadsPerBlock[0]));

roundToHighestFactorOfGlobalSizeIn3d(ThreadsPerBlock, GlobalSizeNormalized,
MaxBlockDim, MaxBlockSize);
}

// Helper to verify out-of-registers case (exceeded block max registers).
Expand Down Expand Up @@ -261,7 +245,7 @@ setKernelParams(const ur_context_handle_t Context,
}
} else {
guessLocalWorkSize(Device, ThreadsPerBlock, GlobalWorkSize, WorkDim,
MaxThreadsPerBlock, Kernel, LocalSize);
MaxThreadsPerBlock, Kernel);
}
}

Expand Down
36 changes: 22 additions & 14 deletions source/adapters/hip/enqueue.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -16,6 +16,8 @@
#include "memory.hpp"
#include "queue.hpp"

#include <ur/ur.hpp>

extern size_t imageElementByteSize(hipArray_Format ArrayFormat);

ur_result_t enqueueEventsWait(ur_queue_handle_t, hipStream_t Stream,
Expand Down Expand Up @@ -48,23 +50,29 @@ ur_result_t enqueueEventsWait(ur_queue_handle_t, hipStream_t Stream,
}
}

void simpleGuessLocalWorkSize(size_t *ThreadsPerBlock,
const size_t *GlobalWorkSize,
const size_t MaxThreadsPerBlock[3],
ur_kernel_handle_t Kernel) {
// Determine local work sizes that result in uniform work groups.
// The default threadsPerBlock only require handling the first work_dim
// dimension.
void guessLocalWorkSize(ur_device_handle_t Device, size_t *ThreadsPerBlock,
const size_t *GlobalWorkSize, const uint32_t WorkDim,
const size_t MaxThreadsPerBlock[3]) {
assert(ThreadsPerBlock != nullptr);
assert(GlobalWorkSize != nullptr);
assert(Kernel != nullptr);

std::ignore = Kernel;
// FIXME: The below assumes a three dimensional range but this is not
// guaranteed by UR.
size_t GlobalSizeNormalized[3] = {1, 1, 1};
for (uint32_t i = 0; i < WorkDim; i++) {
GlobalSizeNormalized[i] = GlobalWorkSize[i];
}

ThreadsPerBlock[0] = std::min(MaxThreadsPerBlock[0], GlobalWorkSize[0]);
size_t MaxBlockDim[3];
MaxBlockDim[0] = MaxThreadsPerBlock[0];
MaxBlockDim[1] = Device->getMaxBlockDimY();
MaxBlockDim[2] = Device->getMaxBlockDimZ();

// Find a local work group size that is a divisor of the global
// work group size to produce uniform work groups.
while (GlobalWorkSize[0] % ThreadsPerBlock[0]) {
--ThreadsPerBlock[0];
}
roundToHighestFactorOfGlobalSizeIn3d(ThreadsPerBlock, GlobalSizeNormalized,
MaxBlockDim, MaxThreadsPerBlock[0]);
}

namespace {
Expand Down Expand Up @@ -1793,8 +1801,8 @@ setKernelParams(const ur_device_handle_t Device, const uint32_t WorkDim,
return err;
}
} else {
simpleGuessLocalWorkSize(ThreadsPerBlock, GlobalWorkSize,
MaxThreadsPerBlock, Kernel);
guessLocalWorkSize(Device, ThreadsPerBlock, GlobalWorkSize, WorkDim,
MaxThreadsPerBlock);
}
}

Expand Down
53 changes: 53 additions & 0 deletions source/ur/ur.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -321,3 +321,56 @@ template <typename T> class Result {
private:
std::variant<ur_result_t, T> value_or_err;
};

// Helper to make sure each x, y, z dim divide the global dimension.
//
// In/Out: ThreadsPerBlockInDim - The dimension of workgroup in some dimension
// In: GlobalWorkSizeInDim - The global size in some dimension
static inline void
roundToHighestFactorOfGlobalSize(size_t &ThreadsPerBlockInDim,
const size_t GlobalWorkSizeInDim) {
while (ThreadsPerBlockInDim > 1 &&
GlobalWorkSizeInDim % ThreadsPerBlockInDim) {
--ThreadsPerBlockInDim;
}
}

// Returns whether or not Value is a power of 2
template <typename T> inline bool isPowerOf2(const T &Value) {
return Value && !(Value & (Value - 1));
}

// Helper to make sure each x, y, z dim divide the global dimension.
// Additionally it makes sure that the inner dimension always is a power of 2
//
// In/Out: ThreadsPerBlock - The size of wg in 3d
// In: GlobalSize - The global size in 3d (if dim < 3 then outer
// dims == 1)
// In: MaxBlockDim - The max size of block in 3d
// In: MaxBlockSize - The max total size of block in all dimensions
// In: WorkDim - The workdim (1, 2 or 3)
static inline void roundToHighestFactorOfGlobalSizeIn3d(
size_t *ThreadsPerBlock, const size_t *GlobalSize,
const size_t *MaxBlockDim, const size_t MaxBlockSize) {
assert(GlobalSize[0] && "GlobalSize[0] cannot be zero");
assert(GlobalSize[1] && "GlobalSize[1] cannot be zero");
assert(GlobalSize[2] && "GlobalSize[2] cannot be zero");

ThreadsPerBlock[0] =
std::min(GlobalSize[0], std::min(MaxBlockSize, MaxBlockDim[0]));
do {
roundToHighestFactorOfGlobalSize(ThreadsPerBlock[0], GlobalSize[0]);
} while (!isPowerOf2(ThreadsPerBlock[0]) && ThreadsPerBlock[0] > 32 &&
--ThreadsPerBlock[0]);

ThreadsPerBlock[1] =
std::min(GlobalSize[1],
std::min(MaxBlockSize / ThreadsPerBlock[0], MaxBlockDim[1]));
roundToHighestFactorOfGlobalSize(ThreadsPerBlock[1], GlobalSize[1]);

ThreadsPerBlock[2] = std::min(
GlobalSize[2],
std::min(MaxBlockSize / (ThreadsPerBlock[1] * ThreadsPerBlock[0]),
MaxBlockDim[2]));
roundToHighestFactorOfGlobalSize(ThreadsPerBlock[2], GlobalSize[2]);
}
104 changes: 72 additions & 32 deletions test/conformance/enqueue/urEnqueueKernelLaunch.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -77,53 +77,93 @@ TEST_P(urEnqueueKernelLaunchTest, InvalidWorkDimension) {
UR_RESULT_ERROR_INVALID_WORK_DIMENSION);
}

struct urEnqueueKernelLaunch2DTest : uur::urKernelExecutionTest {
void SetUp() override {
program_name = "fill_2d";
UUR_RETURN_ON_FATAL_FAILURE(urKernelExecutionTest::SetUp());
}

uint32_t val = 42;
size_t global_size[2] = {8, 8};
size_t global_offset[2] = {0, 0};
size_t buffer_size = sizeof(val) * global_size[0] * global_size[1];
size_t n_dimensions = 2;
struct testParametersEnqueueKernel {
size_t X, Y, Z;
size_t Dims;
};
UUR_INSTANTIATE_DEVICE_TEST_SUITE_P(urEnqueueKernelLaunch2DTest);

TEST_P(urEnqueueKernelLaunch2DTest, Success) {
ur_mem_handle_t buffer = nullptr;
AddBuffer1DArg(buffer_size, &buffer);
AddPodArg(val);
ASSERT_SUCCESS(urEnqueueKernelLaunch(queue, kernel, n_dimensions,
global_offset, global_size, nullptr, 0,
nullptr, nullptr));
ASSERT_SUCCESS(urQueueFinish(queue));
ValidateBuffer(buffer, buffer_size, val);
template <typename T>
inline std::string printKernelLaunchTestString(
const testing::TestParamInfo<typename T::ParamType> &info) {
const auto device_handle = std::get<0>(info.param);
const auto platform_device_name =
uur::GetPlatformAndDeviceName(device_handle);
std::stringstream test_name;
test_name << platform_device_name << "__" << std::get<1>(info.param).Dims
<< "D_" << std::get<1>(info.param).X;
if (std::get<1>(info.param).Dims > 1) {
test_name << "_" << std::get<1>(info.param).Y;
}
if (std::get<1>(info.param).Dims > 2) {
test_name << "_" << std::get<1>(info.param).Z;
}
test_name << "";
return test_name.str();
}

struct urEnqueueKernelLaunch3DTest : uur::urKernelExecutionTest {
struct urEnqueueKernelLaunchTestWithParam
: uur::urBaseKernelExecutionTestWithParam<testParametersEnqueueKernel> {
void SetUp() override {
program_name = "fill_3d";
UUR_RETURN_ON_FATAL_FAILURE(urKernelExecutionTest::SetUp());
global_range[0] = std::get<1>(GetParam()).X;
global_range[1] = std::get<1>(GetParam()).Y;
global_range[2] = std::get<1>(GetParam()).Z;
buffer_size = sizeof(val) * global_range[0];
n_dimensions = std::get<1>(GetParam()).Dims;
if (n_dimensions == 1) {
program_name = "fill";
} else if (n_dimensions == 2) {
program_name = "fill_2d";
buffer_size *= global_range[1];
} else {
assert(n_dimensions == 3);
program_name = "fill_3d";
buffer_size *= global_range[1] * global_range[2];
}
UUR_RETURN_ON_FATAL_FAILURE(
urBaseKernelExecutionTestWithParam::SetUp());
}

void TearDown() override {
UUR_RETURN_ON_FATAL_FAILURE(uur::urBaseKernelExecutionTestWithParam<
testParametersEnqueueKernel>::TearDown());
}

uint32_t val = 42;
size_t global_size[3] = {4, 4, 4};
size_t global_range[3];
size_t global_offset[3] = {0, 0, 0};
size_t buffer_size =
sizeof(val) * global_size[0] * global_size[1] * global_size[2];
size_t n_dimensions = 3;
size_t n_dimensions;
size_t buffer_size;
};
UUR_INSTANTIATE_DEVICE_TEST_SUITE_P(urEnqueueKernelLaunch3DTest);

TEST_P(urEnqueueKernelLaunch3DTest, Success) {
static std::vector<testParametersEnqueueKernel> test_cases{// 1D
{1, 1, 1, 1},
{31, 1, 1, 1},
{1027, 1, 1, 1},
{32, 1, 1, 1},
{256, 1, 1, 1},
// 2D
{1, 1, 1, 2},
{31, 7, 1, 2},
{1027, 1, 1, 2},
{1, 32, 1, 2},
{256, 79, 1, 2},
// 3D
{1, 1, 1, 3},
{31, 7, 1, 3},
{1027, 1, 19, 3},
{1, 53, 19, 3},
{256, 79, 8, 3}};
UUR_TEST_SUITE_P(
urEnqueueKernelLaunchTestWithParam, testing::ValuesIn(test_cases),
printKernelLaunchTestString<urEnqueueKernelLaunchTestWithParam>);

TEST_P(urEnqueueKernelLaunchTestWithParam, Success) {
ur_mem_handle_t buffer = nullptr;
AddBuffer1DArg(buffer_size, &buffer);
AddPodArg(val);
ASSERT_SUCCESS(urEnqueueKernelLaunch(queue, kernel, n_dimensions,
global_offset, global_size, nullptr, 0,
nullptr, nullptr));
global_offset, global_range, nullptr,
0, nullptr, nullptr));
ASSERT_SUCCESS(urQueueFinish(queue));
ValidateBuffer(buffer, buffer_size, val);
}
Expand Down
Loading