-
Notifications
You must be signed in to change notification settings - Fork 1.1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
315 additions
and
0 deletions.
There are no files selected for viewing
4 changes: 4 additions & 0 deletions
4
ingestion/tests/integration/datalake-s3/resources/profiler_test_.csv
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
id,first_name,last_name,city,country,birthdate,age | ||
1,John,Doe,Los Angeles,US,1980-01-01,40 | ||
2,Jane,Doe,Los Angeles,US,2000-12-31,39 | ||
3,Jane,Smith,Paris,FR,2001-11-11,28 |
311 changes: 311 additions & 0 deletions
311
ingestion/tests/integration/datalake-s3/test_datalake_profiler_e2e.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,311 @@ | ||
# Copyright 2021 Collate | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
""" | ||
Test Datalake Profiler workflow | ||
To run this we need OpenMetadata server up and running. | ||
No sample data is required beforehand | ||
""" | ||
import pytest | ||
|
||
from ingestion.tests.integration.datalake.conftest import BUCKET_NAME | ||
from metadata.generated.schema.entity.data.table import ColumnProfile, Table | ||
from metadata.utils.time_utils import ( | ||
get_beginning_of_day_timestamp_mill, | ||
get_end_of_day_timestamp_mill, | ||
) | ||
from metadata.workflow.profiler import ProfilerWorkflow | ||
from metadata.workflow.workflow_output_handler import WorkflowResultStatus | ||
|
||
|
||
@pytest.fixture(scope="class", autouse=True) | ||
def before_each(run_ingestion): | ||
pass | ||
|
||
|
||
class TestDatalakeProfilerTestE2E: | ||
"""datalake profiler E2E test""" | ||
|
||
def test_datalake_profiler_workflow(self, ingestion_config, metadata): | ||
ingestion_config["source"]["sourceConfig"]["config"].update( | ||
{ | ||
"type": "Profiler", | ||
} | ||
) | ||
ingestion_config["processor"] = { | ||
"type": "orm-profiler", | ||
"config": {}, | ||
} | ||
|
||
profiler_workflow = ProfilerWorkflow.create(ingestion_config) | ||
profiler_workflow.execute() | ||
status = profiler_workflow.result_status() | ||
profiler_workflow.stop() | ||
|
||
assert status == WorkflowResultStatus.SUCCESS | ||
|
||
table_profile = metadata.get_profile_data( | ||
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
get_beginning_of_day_timestamp_mill(), | ||
get_end_of_day_timestamp_mill(), | ||
) | ||
|
||
column_profile = metadata.get_profile_data( | ||
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".first_name', | ||
get_beginning_of_day_timestamp_mill(), | ||
get_end_of_day_timestamp_mill(), | ||
profile_type=ColumnProfile, | ||
) | ||
|
||
assert table_profile.entities | ||
assert column_profile.entities | ||
|
||
def test_values_partitioned_datalake_profiler_workflow( | ||
self, metadata, ingestion_config | ||
): | ||
"""Test partitioned datalake profiler workflow""" | ||
ingestion_config["source"]["sourceConfig"]["config"].update( | ||
{ | ||
"type": "Profiler", | ||
} | ||
) | ||
ingestion_config["processor"] = { | ||
"type": "orm-profiler", | ||
"config": { | ||
"tableConfig": [ | ||
{ | ||
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
"partitionConfig": { | ||
"enablePartitioning": "true", | ||
"partitionColumnName": "first_name", | ||
"partitionIntervalType": "COLUMN-VALUE", | ||
"partitionValues": ["John"], | ||
}, | ||
} | ||
] | ||
}, | ||
} | ||
|
||
profiler_workflow = ProfilerWorkflow.create(ingestion_config) | ||
profiler_workflow.execute() | ||
status = profiler_workflow.result_status() | ||
profiler_workflow.stop() | ||
|
||
assert status == WorkflowResultStatus.SUCCESS | ||
|
||
table = metadata.get_by_name( | ||
entity=Table, | ||
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
fields=["tableProfilerConfig"], | ||
nullable=False, | ||
) | ||
|
||
profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile | ||
|
||
assert profile.rowCount == 1.0 | ||
|
||
def test_datetime_partitioned_datalake_profiler_workflow( | ||
self, ingestion_config, metadata | ||
): | ||
"""Test partitioned datalake profiler workflow""" | ||
ingestion_config["source"]["sourceConfig"]["config"].update( | ||
{ | ||
"type": "Profiler", | ||
} | ||
) | ||
ingestion_config["processor"] = { | ||
"type": "orm-profiler", | ||
"config": { | ||
"tableConfig": [ | ||
{ | ||
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
"partitionConfig": { | ||
"enablePartitioning": "true", | ||
"partitionColumnName": "birthdate", | ||
"partitionIntervalType": "TIME-UNIT", | ||
"partitionIntervalUnit": "YEAR", | ||
"partitionInterval": 35, | ||
}, | ||
} | ||
], | ||
}, | ||
} | ||
|
||
profiler_workflow = ProfilerWorkflow.create(ingestion_config) | ||
profiler_workflow.execute() | ||
status = profiler_workflow.result_status() | ||
profiler_workflow.stop() | ||
|
||
assert status == WorkflowResultStatus.SUCCESS | ||
|
||
table = metadata.get_by_name( | ||
entity=Table, | ||
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
fields=["tableProfilerConfig"], | ||
) | ||
|
||
profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile | ||
|
||
assert profile.rowCount == 2.0 | ||
|
||
def test_integer_range_partitioned_datalake_profiler_workflow( | ||
self, ingestion_config, metadata | ||
): | ||
"""Test partitioned datalake profiler workflow""" | ||
ingestion_config["source"]["sourceConfig"]["config"].update( | ||
{ | ||
"type": "Profiler", | ||
} | ||
) | ||
ingestion_config["processor"] = { | ||
"type": "orm-profiler", | ||
"config": { | ||
"tableConfig": [ | ||
{ | ||
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
"profileSample": 100, | ||
"partitionConfig": { | ||
"enablePartitioning": "true", | ||
"partitionColumnName": "age", | ||
"partitionIntervalType": "INTEGER-RANGE", | ||
"partitionIntegerRangeStart": 35, | ||
"partitionIntegerRangeEnd": 44, | ||
}, | ||
} | ||
], | ||
}, | ||
} | ||
|
||
profiler_workflow = ProfilerWorkflow.create(ingestion_config) | ||
profiler_workflow.execute() | ||
status = profiler_workflow.result_status() | ||
profiler_workflow.stop() | ||
|
||
assert status == WorkflowResultStatus.SUCCESS | ||
|
||
table = metadata.get_by_name( | ||
entity=Table, | ||
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
fields=["tableProfilerConfig"], | ||
) | ||
|
||
profile = metadata.get_latest_table_profile(table.fullyQualifiedName).profile | ||
|
||
assert profile.rowCount == 2.0 | ||
|
||
def test_datalake_profiler_workflow_with_custom_profiler_config( | ||
self, metadata, ingestion_config | ||
): | ||
"""Test custom profiler config return expected sample and metric computation""" | ||
profiler_metrics = [ | ||
"MIN", | ||
"MAX", | ||
"MEAN", | ||
"MEDIAN", | ||
] | ||
id_metrics = ["MIN", "MAX"] | ||
non_metric_values = ["name", "timestamp"] | ||
|
||
ingestion_config["source"]["sourceConfig"]["config"].update( | ||
{ | ||
"type": "Profiler", | ||
} | ||
) | ||
ingestion_config["processor"] = { | ||
"type": "orm-profiler", | ||
"config": { | ||
"profiler": { | ||
"name": "ingestion_profiler", | ||
"metrics": profiler_metrics, | ||
}, | ||
"tableConfig": [ | ||
{ | ||
"fullyQualifiedName": f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
"columnConfig": { | ||
"includeColumns": [ | ||
{"columnName": "id", "metrics": id_metrics}, | ||
{"columnName": "age"}, | ||
] | ||
}, | ||
} | ||
], | ||
}, | ||
} | ||
|
||
profiler_workflow = ProfilerWorkflow.create(ingestion_config) | ||
profiler_workflow.execute() | ||
status = profiler_workflow.result_status() | ||
profiler_workflow.stop() | ||
|
||
assert status == WorkflowResultStatus.SUCCESS | ||
|
||
table = metadata.get_by_name( | ||
entity=Table, | ||
fqn=f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv"', | ||
fields=["tableProfilerConfig"], | ||
) | ||
|
||
id_profile = metadata.get_profile_data( | ||
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".id', | ||
get_beginning_of_day_timestamp_mill(), | ||
get_end_of_day_timestamp_mill(), | ||
profile_type=ColumnProfile, | ||
).entities | ||
|
||
latest_id_profile = max(id_profile, key=lambda o: o.timestamp.root) | ||
|
||
id_metric_ln = 0 | ||
for metric_name, metric in latest_id_profile: | ||
if metric_name.upper() in id_metrics: | ||
assert metric is not None | ||
id_metric_ln += 1 | ||
else: | ||
assert metric is None if metric_name not in non_metric_values else True | ||
|
||
assert id_metric_ln == len(id_metrics) | ||
|
||
age_profile = metadata.get_profile_data( | ||
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".age', | ||
get_beginning_of_day_timestamp_mill(), | ||
get_end_of_day_timestamp_mill(), | ||
profile_type=ColumnProfile, | ||
).entities | ||
|
||
latest_age_profile = max(age_profile, key=lambda o: o.timestamp.root) | ||
|
||
age_metric_ln = 0 | ||
for metric_name, metric in latest_age_profile: | ||
if metric_name.upper() in profiler_metrics: | ||
assert metric is not None | ||
age_metric_ln += 1 | ||
else: | ||
assert metric is None if metric_name not in non_metric_values else True | ||
|
||
assert age_metric_ln == len(profiler_metrics) | ||
|
||
latest_exc_timestamp = latest_age_profile.timestamp.root | ||
first_name_profile = metadata.get_profile_data( | ||
f'{ingestion_config["source"]["serviceName"]}.default.{BUCKET_NAME}."profiler_test_.csv".first_name_profile', | ||
get_beginning_of_day_timestamp_mill(), | ||
get_end_of_day_timestamp_mill(), | ||
profile_type=ColumnProfile, | ||
).entities | ||
|
||
assert not [ | ||
p for p in first_name_profile if p.timestamp.root == latest_exc_timestamp | ||
] | ||
|
||
sample_data = metadata.get_sample_data(table) | ||
assert sorted([c.root for c in sample_data.sampleData.columns]) == sorted( | ||
["id", "age"] | ||
) |