-
-
Notifications
You must be signed in to change notification settings - Fork 289
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #169 from g453030291/aws_bedrock_example
Adding Examples:AWS Bedrock claude
- Loading branch information
Showing
1 changed file
with
181 additions
and
0 deletions.
There are no files selected for viewing
181 changes: 181 additions & 0 deletions
181
examples/pipelines/providers/aws_bedrock_claude_pipeline.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,181 @@ | ||
""" | ||
title: AWS Bedrock Claude Pipeline | ||
author: G-mario | ||
date: 2024-08-18 | ||
version: 1.0 | ||
license: MIT | ||
description: A pipeline for generating text and processing images using the AWS Bedrock API(By Anthropic claude). | ||
requirements: requests, boto3 | ||
environment_variables: AWS_ACCESS_KEY, AWS_SECRET_KEY, AWS_REGION_NAME | ||
""" | ||
import base64 | ||
import json | ||
import logging | ||
from io import BytesIO | ||
from typing import List, Union, Generator, Iterator | ||
|
||
import boto3 | ||
|
||
from pydantic import BaseModel | ||
|
||
import os | ||
import requests | ||
|
||
from utils.pipelines.main import pop_system_message | ||
|
||
|
||
class Pipeline: | ||
class Valves(BaseModel): | ||
AWS_ACCESS_KEY: str = "" | ||
AWS_SECRET_KEY: str = "" | ||
AWS_REGION_NAME: str = "" | ||
|
||
def __init__(self): | ||
self.type = "manifold" | ||
# Optionally, you can set the id and name of the pipeline. | ||
# Best practice is to not specify the id so that it can be automatically inferred from the filename, so that users can install multiple versions of the same pipeline. | ||
# The identifier must be unique across all pipelines. | ||
# The identifier must be an alphanumeric string that can include underscores or hyphens. It cannot contain spaces, special characters, slashes, or backslashes. | ||
# self.id = "openai_pipeline" | ||
self.name = "Bedrock: " | ||
|
||
self.valves = self.Valves( | ||
**{ | ||
"AWS_ACCESS_KEY": os.getenv("AWS_ACCESS_KEY", "your-aws-access-key-here"), | ||
"AWS_SECRET_KEY": os.getenv("AWS_SECRET_KEY", "your-aws-secret-key-here"), | ||
"AWS_REGION_NAME": os.getenv("AWS_REGION_NAME", "your-aws-region-name-here"), | ||
} | ||
) | ||
|
||
self.bedrock = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY, | ||
aws_secret_access_key=self.valves.AWS_SECRET_KEY, | ||
service_name="bedrock", | ||
region_name=self.valves.AWS_REGION_NAME) | ||
self.bedrock_runtime = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY, | ||
aws_secret_access_key=self.valves.AWS_SECRET_KEY, | ||
service_name="bedrock-runtime", | ||
region_name=self.valves.AWS_REGION_NAME) | ||
|
||
self.pipelines = self.get_models() | ||
|
||
|
||
async def on_startup(self): | ||
# This function is called when the server is started. | ||
print(f"on_startup:{__name__}") | ||
pass | ||
|
||
async def on_shutdown(self): | ||
# This function is called when the server is stopped. | ||
print(f"on_shutdown:{__name__}") | ||
pass | ||
|
||
async def on_valves_updated(self): | ||
# This function is called when the valves are updated. | ||
print(f"on_valves_updated:{__name__}") | ||
self.bedrock = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY, | ||
aws_secret_access_key=self.valves.AWS_SECRET_KEY, | ||
service_name="bedrock", | ||
region_name=self.valves.AWS_REGION_NAME) | ||
self.bedrock_runtime = boto3.client(aws_access_key_id=self.valves.AWS_ACCESS_KEY, | ||
aws_secret_access_key=self.valves.AWS_SECRET_KEY, | ||
service_name="bedrock-runtime", | ||
region_name=self.valves.AWS_REGION_NAME) | ||
self.pipelines = self.get_models() | ||
|
||
def pipelines(self) -> List[dict]: | ||
return self.get_models() | ||
|
||
def get_models(self): | ||
if self.valves.AWS_ACCESS_KEY and self.valves.AWS_SECRET_KEY: | ||
try: | ||
response = self.bedrock.list_foundation_models(byProvider='Anthropic', byInferenceType='ON_DEMAND') | ||
return [ | ||
{ | ||
"id": model["modelId"], | ||
"name": model["modelName"], | ||
} | ||
for model in response["modelSummaries"] | ||
] | ||
except Exception as e: | ||
print(f"Error: {e}") | ||
return [ | ||
{ | ||
"id": "error", | ||
"name": "Could not fetch models from Bedrock, please update the Access/Secret Key in the valves.", | ||
}, | ||
] | ||
else: | ||
return [] | ||
|
||
def pipe( | ||
self, user_message: str, model_id: str, messages: List[dict], body: dict | ||
) -> Union[str, Generator, Iterator]: | ||
# This is where you can add your custom pipelines like RAG. | ||
print(f"pipe:{__name__}") | ||
|
||
system_message, messages = pop_system_message(messages) | ||
|
||
logging.info(f"pop_system_message: {json.dumps(messages)}") | ||
|
||
try: | ||
processed_messages = [] | ||
image_count = 0 | ||
for message in messages: | ||
processed_content = [] | ||
if isinstance(message.get("content"), list): | ||
for item in message["content"]: | ||
if item["type"] == "text": | ||
processed_content.append({"text": item["text"]}) | ||
elif item["type"] == "image_url": | ||
if image_count >= 20: | ||
raise ValueError("Maximum of 20 images per API call exceeded") | ||
processed_image = self.process_image(item["image_url"]) | ||
processed_content.append(processed_image) | ||
image_count += 1 | ||
else: | ||
processed_content = [{"text": message.get("content", "")}] | ||
|
||
processed_messages.append({"role": message["role"], "content": processed_content}) | ||
|
||
payload = {"modelId": model_id, | ||
"messages": processed_messages, | ||
"system": [{'text': system_message if system_message else 'you are an intelligent ai assistant'}], | ||
"inferenceConfig": {"temperature": body.get("temperature", 0.5)}, | ||
"additionalModelRequestFields": {"top_k": body.get("top_k", 200), "top_p": body.get("top_p", 0.9)} | ||
} | ||
if body.get("stream", False): | ||
return self.stream_response(model_id, payload) | ||
else: | ||
return self.get_completion(model_id, payload) | ||
except Exception as e: | ||
return f"Error: {e}" | ||
|
||
def process_image(self, image: str): | ||
img_stream = None | ||
if image["url"].startswith("data:image"): | ||
if ',' in image["url"]: | ||
base64_string = image["url"].split(',')[1] | ||
image_data = base64.b64decode(base64_string) | ||
|
||
img_stream = BytesIO(image_data) | ||
else: | ||
img_stream = requests.get(image["url"]).content | ||
return { | ||
"image": {"format": "png" if image["url"].endswith(".png") else "jpeg", | ||
"source": {"bytes": img_stream.read()}} | ||
} | ||
|
||
def stream_response(self, model_id: str, payload: dict) -> Generator: | ||
if "system" in payload: | ||
del payload["system"] | ||
if "additionalModelRequestFields" in payload: | ||
del payload["additionalModelRequestFields"] | ||
streaming_response = self.bedrock_runtime.converse_stream(**payload) | ||
for chunk in streaming_response["stream"]: | ||
if "contentBlockDelta" in chunk: | ||
yield chunk["contentBlockDelta"]["delta"]["text"] | ||
|
||
def get_completion(self, model_id: str, payload: dict) -> str: | ||
response = self.bedrock_runtime.converse(**payload) | ||
return response['output']['message']['content'][0]['text'] | ||
|