Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

673: Add LogisticLogNormalGrouped class #674

Merged
merged 11 commits into from
Sep 14, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 0 additions & 1 deletion .lintr
Original file line number Diff line number Diff line change
Expand Up @@ -3,6 +3,5 @@ linters: linters_with_defaults(
cyclocomp_linter = NULL,
object_usage_linter = NULL,
object_length_linter = NULL,
indentation_linter = NULL,
object_name_linter = object_name_linter(c("CamelCase", "camelCase", "snake_case"))
)
4 changes: 4 additions & 0 deletions NAMESPACE
Original file line number Diff line number Diff line change
Expand Up @@ -43,6 +43,7 @@ export(.DefaultIncrementsRelativeParts)
export(.DefaultLogisticKadane)
export(.DefaultLogisticKadaneBetaGamma)
export(.DefaultLogisticLogNormal)
export(.DefaultLogisticLogNormalGrouped)
export(.DefaultLogisticLogNormalMixture)
export(.DefaultLogisticLogNormalSub)
export(.DefaultLogisticNormal)
Expand Down Expand Up @@ -112,6 +113,7 @@ export(.LogisticIndepBeta)
export(.LogisticKadane)
export(.LogisticKadaneBetaGamma)
export(.LogisticLogNormal)
export(.LogisticLogNormalGrouped)
export(.LogisticLogNormalMixture)
export(.LogisticLogNormalSub)
export(.LogisticNormal)
Expand Down Expand Up @@ -210,6 +212,7 @@ export(LogisticIndepBeta)
export(LogisticKadane)
export(LogisticKadaneBetaGamma)
export(LogisticLogNormal)
export(LogisticLogNormalGrouped)
export(LogisticLogNormalMixture)
export(LogisticLogNormalSub)
export(LogisticNormal)
Expand Down Expand Up @@ -400,6 +403,7 @@ exportClasses(LogisticIndepBeta)
exportClasses(LogisticKadane)
exportClasses(LogisticKadaneBetaGamma)
exportClasses(LogisticLogNormal)
exportClasses(LogisticLogNormalGrouped)
exportClasses(LogisticLogNormalMixture)
exportClasses(LogisticLogNormalSub)
exportClasses(LogisticNormal)
Expand Down
91 changes: 91 additions & 0 deletions R/Model-class.R
Original file line number Diff line number Diff line change
Expand Up @@ -516,6 +516,97 @@ ProbitLogNormalRel <- function(mean, cov, ref_dose = 1) {
ProbitLogNormalRel(mean = c(-0.85, 1), cov = matrix(c(1, -0.5, -0.5, 1), nrow = 2))
}

# LogisticLogNormalGrouped ----

## class ----

#' `LogisticLogNormalGrouped`
#'
#' @description `r lifecycle::badge("experimental")`
#'
#' [`LogisticLogNormalGrouped`] is the class for a logistic regression model
#' for both the mono and the combo arms of the simultaneous dose escalation
#' design.
#'
#' @details The continuous covariate is the natural logarithm of the dose \eqn{x} divided by
#' the reference dose \eqn{x*} as in [`LogisticLogNormal`]. In addition,
#' \eqn{I_c} is a binary indicator covariate which is 1 for the combo arm and 0 for the mono arm.
#' The model is then defined as:
#' \deqn{logit[p(x)] = (alpha0 + I_c * delta0) + (alpha1 + I_c * delta1) * log(x / x*),}
#' where \eqn{p(x)} is the probability of observing a DLT for a given dose \eqn{x},
#' and `delta0` and `delta1` are the differences in the combo arm compared to the mono intercept
#' and slope parameters `alpha0` and `alpha1`.
#' The prior is defined as \deqn{(alpha0, log(delta0), log(alpha1), log(delta1)) ~ Normal(mean, cov).}
#'
#' @seealso [`ModelLogNormal`], [`LogisticLogNormal`].
#'
#' @aliases LogisticLogNormalGrouped
#' @export
#'
.LogisticLogNormalGrouped <- setClass(
Class = "LogisticLogNormalGrouped",
contains = "ModelLogNormal"
)

## constructor ----

#' @rdname LogisticLogNormalGrouped-class
#'
#' @inheritParams ModelLogNormal
#'
#' @export
#' @example examples/Model-class-LogisticLogNormalGrouped.R
#'
LogisticLogNormalGrouped <- function(mean, cov, ref_dose = 1) {
params <- ModelParamsNormal(mean, cov)
.LogisticLogNormalGrouped(
params = params,
ref_dose = positive_number(ref_dose),
priormodel = function() {
theta ~ dmnorm(mean, prec)
alpha0 <- theta[1]
delta0 <- exp(theta[2])
alpha1 <- exp(theta[3])
delta1 <- exp(theta[4])
},
datamodel = function() {
for (i in 1:nObs) {
logit(p[i]) <- (alpha0 + is_combo[i] * delta0) +
(alpha1 + is_combo[i] * delta1) * log(x[i] / ref_dose)
y[i] ~ dbern(p[i])
}
},
modelspecs = function(group, from_prior) {
ms <- list(
mean = params@mean,
prec = params@prec
)
if (!from_prior) {
ms$ref_dose <- ref_dose
ms$is_combo <- as.integer(group == "combo")
}
ms
},
init = function() {
list(theta = c(0, 1, 1, 1))
},
datanames = c("nObs", "y", "x"),
sample = c("alpha0", "delta0", "alpha1", "delta1")
)
}

## default constructor ----

#' @rdname LogisticLogNormalGrouped-class
#' @note Typically, end users will not use the `.DefaultLogisticLogNormalGrouped()` function.
#' @export
.DefaultLogisticLogNormalGrouped <- function() {
LogisticLogNormalGrouped(
mean = rep(0, 4),
cov = diag(rep(1, 4)),
)
}

# LogisticKadane ----

## class ----
Expand Down
78 changes: 74 additions & 4 deletions R/Model-methods.R
Original file line number Diff line number Diff line change
Expand Up @@ -50,8 +50,8 @@ setMethod(
data = model_params,
options = McmcOptions(samples = NROW(model_params[[1]]))
)
function(x) {
dose(x = x, model = model, samples = samples)
function(x, ...) {
dose(x = x, model = model, samples = samples, ...)
}
}
)
Expand Down Expand Up @@ -127,8 +127,8 @@ setMethod(
data = model_params,
options = McmcOptions(samples = NROW(model_params[[1]]))
)
function(dose) {
prob(dose = dose, model = model, samples = samples)
function(dose, ...) {
prob(dose = dose, model = model, samples = samples, ...)
}
}
)
Expand Down Expand Up @@ -403,6 +403,41 @@ setMethod(
}
)

## LogisticLogNormalGrouped ----

#' @describeIn dose method for [`LogisticLogNormalGrouped`] which needs `group`
#' argument in addition.
#' @param group (`character` or `factor`)\cr for [`LogisticLogNormalGrouped`],
#' indicating whether to calculate the dose for the `mono` or for
#' the `combo` arm.
#' @aliases dose-LogisticLogNormalGrouped
#' @export
#'
setMethod(
f = "dose",
signature = signature(
x = "numeric",
model = "LogisticLogNormalGrouped",
samples = "Samples"
),
definition = function(x, model, samples, group) {
assert_probabilities(x)
assert_subset(c("alpha0", "delta0", "alpha1", "delta1"), names(samples))
assert_length(x, len = size(samples))
assert_multi_class(group, c("character", "factor"))
assert_subset(as.character(group), choices = c("mono", "combo"))
assert_length(group, len = size(samples))

alpha0 <- samples@data$alpha0
delta0 <- samples@data$delta0
alpha1 <- samples@data$alpha1
delta1 <- samples@data$delta1
ref_dose <- as.numeric(model@ref_dose)
is_combo <- as.integer(group == "combo")
exp((logit(x) - (alpha0 + is_combo * delta0)) / (alpha1 + is_combo * delta1)) * ref_dose
}
)

## LogisticKadane ----

#' @describeIn dose compute the dose level reaching a specific target
Expand Down Expand Up @@ -923,6 +958,41 @@ setMethod(
}
)

## LogisticLogNormalGrouped ----

#' @describeIn prob method for [`LogisticLogNormalGrouped`] which needs `group`
#' argument in addition.
#' @param group (`character` or `factor`)\cr for [`LogisticLogNormalGrouped`],
#' indicating whether to calculate the probability for the `mono` or for
#' the `combo` arm.
#' @aliases prob-LogisticLogNormalGrouped
#' @export
#'
setMethod(
f = "prob",
signature = signature(
dose = "numeric",
model = "LogisticLogNormalGrouped",
samples = "Samples"
),
definition = function(dose, model, samples, group) {
assert_numeric(dose, lower = 0L, any.missing = FALSE, min.len = 1L)
assert_subset(c("alpha0", "delta0", "alpha1", "delta1"), names(samples))
assert_length(dose, len = size(samples))
assert_multi_class(group, c("character", "factor"))
assert_subset(as.character(group), choices = c("mono", "combo"))
assert_length(group, len = size(samples))

alpha0 <- samples@data$alpha0
delta0 <- samples@data$delta0
alpha1 <- samples@data$alpha1
delta1 <- samples@data$delta1
ref_dose <- as.numeric(model@ref_dose)
is_combo <- as.integer(group == "combo")
plogis((alpha0 + is_combo * delta0) + (alpha1 + is_combo * delta1) * log(dose / ref_dose))
}
)

## LogisticKadane ----

#' @describeIn prob
Expand Down
5 changes: 4 additions & 1 deletion R/crmPack-package.R
Original file line number Diff line number Diff line change
Expand Up @@ -81,7 +81,9 @@ globalVariables(c(
"logit<-",
"rho0",
"alpha0",
"delta0",
"alpha1",
"delta1",
"inverse",
"priorCov",
"theta",
Expand Down Expand Up @@ -135,7 +137,8 @@ globalVariables(c(
"ref_dose",
"comp",
"X",
"skel_probs"
"skel_probs",
"is_combo"
))

# nolint end
1 change: 1 addition & 0 deletions _pkgdown.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@ reference:
- LogisticLogNormalSub
- ProbitLogNormal
- ProbitLogNormalRel
- LogisticLogNormalGrouped
- LogisticKadane
- LogisticKadaneBetaGamma
- LogisticNormalMixture
Expand Down
6 changes: 6 additions & 0 deletions examples/Model-class-LogisticLogNormalGrouped.R
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
my_model <- LogisticLogNormalGrouped(
mean = c(-0.85, 0, 1, 0),
cov = diag(1, 4),
ref_dose = 50
)
my_model
55 changes: 55 additions & 0 deletions man/LogisticLogNormalGrouped-class.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

11 changes: 11 additions & 0 deletions man/dose.Rd

Some generated files are not rendered by default. Learn more about how customized files appear on GitHub.

Loading