Skip to content

Commit

Permalink
code changes for streaming integeration
Browse files Browse the repository at this point in the history
  • Loading branch information
yogesh266 committed Oct 16, 2023
1 parent 3ec41ae commit cf24b43
Show file tree
Hide file tree
Showing 4 changed files with 198 additions and 1 deletion.
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,7 @@ def ingest_feature_definition_stream(
checkpoint_dir,
):
try:
self._save_offline_dataframe_stream(
return self._save_offline_dataframe_stream(
dataframe,
feature_group,
feature_group_job,
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,4 @@
user_id,date,credit_score
c123006815,01/01/22,568
c123006815,01/01/22,568
c123006850,05/02/22,740
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
user_id,date,credit_score
c123006818,04/01/22,571
c123006847,02/02/22,800
c123006820,06/01/22,573
c123006857,12/02/22,850
c123006822,08/01/22,575
c123006823,09/01/22,300
c123006824,10/01/22,577
Original file line number Diff line number Diff line change
@@ -0,0 +1,185 @@
import time

from delta import configure_spark_with_delta_pip
from great_expectations.core import ExpectationSuite, ExpectationConfiguration
from pyspark.sql import SparkSession
from pyspark.sql.types import StructType

from ads.feature_store.common.enums import TransformationMode, ExpectationType
from ads.feature_store.statistics_config import StatisticsConfig
from tests.integration.feature_store.test_base import FeatureStoreTestCase


def get_streaming_df():
spark_builder = (
SparkSession.builder.appName("FeatureStore")
.config("spark.sql.extensions", "io.delta.sql.DeltaSparkSessionExtension")
.config(
"spark.sql.catalog.spark_catalog",
"org.apache.spark.sql.delta.catalog.DeltaCatalog",
)
.enableHiveSupport()
)

spark = configure_spark_with_delta_pip(
spark_builder
).getOrCreate()

# Define the schema for the streaming data frame
credit_score_schema = StructType() \
.add("user_id", "string") \
.add("date", "string") \
.add("credit_score", "string")

credit_score_streaming_df = spark.readStream \
.option("sep", ",") \
.option("header", "true")\
.schema(credit_score_schema) \
.csv("test_data/")

return credit_score_streaming_df


def credit_score_transformation(credit_score):
import pyspark.sql.functions as F

# Create a new Spark DataFrame that contains the transformed credit score.
transformed_credit_score = credit_score.select(
"user_id",
"date",
F.when(F.col("credit_score").cast("int") > 500, 1).otherwise(0).alias("credit_score")
)

# Return the new Spark DataFrame.
return transformed_credit_score


class TestFeatureGroupWithStreamingDataFrame(FeatureStoreTestCase):
"""Contains integration tests for Feature Group Kwargs supported transformation."""

def create_transformation_resource_stream(self, feature_store) -> "Transformation":
transformation = feature_store.create_transformation(
source_code_func=credit_score_transformation,
display_name="credit_score_transformation",
transformation_mode=TransformationMode.SPARK,
)
return transformation


def test_feature_group_materialization_with_streaming_data_frame(self):
fs = self.define_feature_store_resource().create()
assert fs.oci_fs.id

entity = self.create_entity_resource(fs)
assert entity.oci_fs_entity.id

transformation = self.create_transformation_resource_stream(fs)
streaming_df = get_streaming_df()

stats_config = StatisticsConfig().with_is_enabled(False)
fg = entity.create_feature_group(
primary_keys=["User_id"],
schema_details_dataframe=streaming_df,
statistics_config=stats_config,
name=self.get_name("streaming_fg_1"),
transformation_id=transformation.id
)
assert fg.oci_feature_group.id

query = fg.materialise_stream(input_dataframe=streaming_df,
checkpoint_dir=f"test_data/checkpoint/{fg.name}")

assert query
time.sleep(10)
query.stop()

assert fg.select().read().count() == 10

self.clean_up_feature_group(fg)
self.clean_up_transformation(transformation)
self.clean_up_entity(entity)
self.clean_up_feature_store(fs)

def test_feature_group_materialization_with_streaming_data_frame_and_expectation(self):
fs = self.define_feature_store_resource().create()
assert fs.oci_fs.id

entity = self.create_entity_resource(fs)
assert entity.oci_fs_entity.id

transformation = self.create_transformation_resource_stream(fs)
streaming_df = get_streaming_df()

stats_config = StatisticsConfig().with_is_enabled(False)
# Initialize Expectation Suite
expectation_suite_trans = ExpectationSuite(expectation_suite_name="feature_definition")
expectation_suite_trans.add_expectation(
ExpectationConfiguration(
expectation_type="EXPECT_COLUMN_VALUES_TO_BE_NULL", kwargs={"column": "date"}
)
)
expectation_suite_trans.add_expectation(
ExpectationConfiguration(
expectation_type="EXPECT_COLUMN_VALUES_TO_NOT_BE_NULL",
kwargs={"column": "date"},
)
)

fg = entity.create_feature_group(
primary_keys=["User_id"],
schema_details_dataframe=streaming_df,
statistics_config=stats_config,
expectation_suite=expectation_suite_trans,
expectation_type=ExpectationType.LENIENT,
name=self.get_name("streaming_fg_2"),
transformation_id=transformation.id
)
assert fg.oci_feature_group.id

query = fg.materialise_stream(input_dataframe=streaming_df,
checkpoint_dir=f"test_data/checkpoint/{fg.name}")

assert query
time.sleep(10)
query.stop()

assert fg.select().read().count() == 10
assert fg.get_validation_output().to_pandas() is None

self.clean_up_feature_group(fg)
self.clean_up_transformation(transformation)
self.clean_up_entity(entity)
self.clean_up_feature_store(fs)

def test_feature_group_materialization_with_streaming_data_frame_and_stats(self):
fs = self.define_feature_store_resource().create()
assert fs.oci_fs.id

entity = self.create_entity_resource(fs)
assert entity.oci_fs_entity.id

transformation = self.create_transformation_resource_stream(fs)
streaming_df = get_streaming_df()

fg = entity.create_feature_group(
primary_keys=["User_id"],
schema_details_dataframe=streaming_df,
name=self.get_name("streaming_fg_3"),
transformation_id=transformation.id
)
assert fg.oci_feature_group.id

query = fg.materialise_stream(input_dataframe=streaming_df,
checkpoint_dir=f"test_data/checkpoint/{fg.name}")

assert query
time.sleep(10)
query.stop()

assert fg.select().read().count() == 10
assert fg.get_statistics().to_pandas() is None

self.clean_up_feature_group(fg)
self.clean_up_transformation(transformation)
self.clean_up_entity(entity)
self.clean_up_feature_store(fs)

0 comments on commit cf24b43

Please sign in to comment.