If you use dtwParallel
in your research papers, please refer to it using following reference:
@article{escudero2023dtwparallel,
title={dtwParallel: A Python package to efficiently compute dynamic time warping between time series},
author={Escudero-Arnanz, {\'O}scar and Marques, Antonio G and Soguero-Ruiz, Cristina and Mora-Jim{\'e}nez, Inmaculada and Robles, Gregorio},
journal={SoftwareX},
volume={22},
pages={101364},
year={2023},
publisher={Elsevier}
}
https://www.sciencedirect.com/science/article/pii/S2352711023000602
This package allows to measurement of the similarity between two-time sequences, i.e., it finds the optimal alignment between two time-dependent sequences. It allows working with univariate (UTS) and multivariate (MTS) time series, regular (same time length), or irregular (different time length).
One of the parameters available for this method is the method used to calculate the local similarity. For this case, it is possible to use any distance available in scipy.spatial.distance
(it does not allow to work with variables of different nature, i.e., discrete, continuous, and categorical), gower
distance (it allows to work with variables of different nature).
At this point, using local dissimilarities such as norm1, norm2, or square euclidean distance provides optimization in terms of computational time with respect to the rest of the available local dissimilarities.
The available variants of DTW are detailed below:
- dependent DTW ("d").
- Independent DTW ("i").
We can set the following global constraints:
- Itakura parallelogram.
- Sakoe-Chiba band.
- None.
Extra functionality has been incorporated to transform the resulting DTW matrix into an exponential kernel, given the sigma value (default 1).
Display for 2-time series (TS):
- It incorporates the possibility of visualizing the cost matrix, the optimal path to reach the DTW distance value between two TS, and the alignment between two TS. This will allow its use in a didactic way, providing a better understanding of the method used.
Common functionalities for N (> 2) time series (TS):
- The calculation can be parallelized by the CPU by selecting the number of threads. As a result, we will obtain the distance matrix.
- It is possible to perform distance computation and similarity computation (based on an exponential kernel).
The input data types via API are (1) CSV; (2) array; (3) pandas (pd.DataFrame or pd.Series) and (4) npy (for tensors).
Section | Description |
---|---|
Installation | Installing the dependencies and dtwParallel |
Getting started | Packages necessary to work with dtwParallel |
Available parameters | Modifiable parameters in terminal and API with their possible values |
Usage | Different examples for terminal and API |
Configuration | Composition of configuration.ini file |
Examples with public data | Examples with real financial data |
References | References to cite |
License | Package license |
dtwParallel can be installed using pip, a tool for installing Python packages. To do it, run the following command:
pip install dtwParallel
Current version: 0.9.40
dtwParallel requires Python >= 3.6.1 or later to run. For other Python
dependencies, please check the pyproject.toml
file included
on this repository.
Note that you should have also the following packages installed in your system:
- numpy
- pandas
- matplotlib
- seaborn
- gower
- setuptools
- scipy<=1.8
- joblib
- numba
The different parameters available with their possible values are listed below:
Parameter description | Terminal usage | API usage | Possible values |
---|---|---|---|
Check errors | -ce or --check_errors | check_errors | True or False |
Type of DTW variant | -t or --type_dtw | type_dtw | "d" or "i" |
Global constraint | -c or --constrained_path_search | constrained_path_search | "itakura", "sakoe_chiba" or None |
Local dissimilarity value | -d or --local_dissimilarity | local_dissimilarity | any distance available in scipy.spatial.distance , "norm1", "norm2", "gower" or "square_euclidean_distance" |
Time series introduced: univariate or multivariate | MTS | MTS | True or False |
Value used to complete irregular MTS. This value is removed transparently to the user | -rf or --regular_flag | regular_flag | int |
Number of threads used for multiple MTS parallelization | -n or --n_threads | n_threads | int |
Visualization | -vis or --visualization | get_visualization | True or False |
Obtain the result in a file | -of or --output_file | not possible | True or False |
Name for the output file | -nf or --name_file | not possible | string |
Transformation of the DTW distance matrix to an exponential kernel | -k or --dtw_to_kernel | dtw_to_kernel | True or False |
Sigma value for kernel transformation | -s or --sigma_kernel | sigma_kernel | float |
Maximum slope for the Itakura parallelogram | -imx or --itakura_max_slope | itakura_max_slope | float or None |
Radius to be used for Sakoe-Chiba band | -scr or --sakoe_chiba_radius | sakoe_chiba_radius | int or None |
Based on the previous scheme, this package can be used in three different contexts:
The generic example is shown below:
dtwParallel -x <floats> -y <floats> -d <str> -ce <bool> -of <bool>
Note that only the x and y values need to be set. If not indicated, the rest of the values will be selected from the file containing the default values, configuration.ini
.
Next, different uses are shown by modifying the parameters of the function:
a) Example 1. Considers the Euclidean distance, activates the option -ce to check for errors, and uses as input two UTS (denoted as x and y) with the same length (T=10). Firstly, the input TS and distance are checked as valid entries. Secondly, the dtwParallel package computes the DTW distance. Thirdly, the output is shown in the terminal (while in most cases, the outputs are forwarded to a file, we selected this option to facilitate exposition).
dtwParallel -x 2 4 6 8 5 3 6 8 9 15 -y 12 0 0 3 5 6 30 1 2 4 -ce True
[out]: 65.0
b) Example 2. Considering the CityBlock distance.
dtwParallel -x 2.5 4.3 6.6 8.0 1 0 0 1 5.5 15.2 -y 12.1 0 0 1 1 6.4 3.5 1 0 0 -d cityblock
[out]: 45.4
c) Example 3. This examples are, respectively, counterparts to Example 1 and Example 2.
dtwParallel -x 2 4 6 8 5 3 -y 12 0 0 3 5 6 30 1 2 4
[out]: 44.0
dtwParallel -x 2.5 4.3 6.6 8.0 1 0 0 1 5.5 15.2 -y 1 0 0 1 -d cityblock
[out]: 36.09
d) Example 4. Novelty: It has been included the possibility to calculate the Itakura parallelogram and the Sakoe-Chiba band.
dtwParallel -x 2 4 6 8 1 0 0 1 5 15 -y 1 0 0 1 -c "sakoe_chiba" -d "square_euclidean_distance"
[out]: 296.0
dtwParallel -x 2 4 6 8 1 0 0 1 5 15 -y 1 0 0 1 2 4 7 1 9 10 -c "itakura" -d "square_euclidean_distance"
[out]: 169.0
e) Example e. Novelty: A straightforward and optimal way to calculate norm 1, norm 2 and square euclidean distance is included.
dtwParallel -x 2 4 6 8 1 0 0 1 5 15 -y 1 0 0 1 5 6 1 0 9 11 -d "norm1"
[out]: 12.24
dtwParallel -x 2 4 6 8 1 0 0 1 5 15 -y 1 0 0 1 5 6 1 0 9 11 -d "norm2"
[out]: 18.0
dtwParallel -x 2 4 6 8 1 0 0 1 5 15 -y 1 0 0 1 5 6 1 0 9 11 -d "square_euclidean_distance"
[out]: 48.0
We include another example with differents lengths of the time series:
dtwParallel -x 2 4 6 8 1 0 0 -y 1 0 0 1 5 6 1 0 9 11 -d "norm1"
[out]: 13.55
dtwParallel -x 2 4 6 8 1 0 0 -y 1 0 0 1 5 6 1 0 9 11 -d "norm2"
[out]: 29.0
dtwParallel -x 2 4 6 8 1 0 0 -y 1 0 0 1 5 6 1 0 -d "square_euclidean_distance"
[out]: 15.0
Remarks: The calculation of the DTW distance from the command line is limited to simple examples that allow a quick understanding due to the complexity of the terminal handling:
- Univariate time series.
- We can set the following restrictions to the calculation of dependent (d) or independent (i) DTW: Itakura parallelogram, Sakoe-Chiba band or None.
- Include a straightforward and optimal way to calculate norm 1 (l1), norm 2 (l2) and square euclidean distance.
- To visualize the cost matrix, routing and the alignment between a pair of series, it will be necessary to use an integrated development environment.
dtwParallel <file_X> -d <str> -ce <bool> -of <bool>
If you want to modify any of the possible values, it is necessary to modify the configuration.ini file. The possible values are those shown in Configuration.
a) Example 1. Calculation of univariate time series taking as input a csv file containing x and y.
dtwParallel exampleData/Data/E1_SyntheticData/example_1.csv
[out]: 40.6
dtwParallel exampleData/Data/E1_SyntheticData/example_1.csv -d "gower"
[out]: 10.00
dtwParallel exampleData/Data/E1_SyntheticData/example_1.csv -d "norm1"
[out]: 18.46
dtwParallel <file_X> -d <str> -t <str> -ce <bool> -of <bool> -n <int> -k <bool> -s <float>
b) Example 2. Multivariate time series computation using a csv file containing x and y as input.
dtwParallel exampleData/Data/E1_SyntheticData/example_2.csv
[out]: 81.99
dtwParallel exampleData/Data/E1_SyntheticData/example_2.csv -d gower -t i
[out]: 28.99
dtwParallel <file_X> <file_Y> -d <str> -t <str> -ce <bool> -of <bool> -n <int> -k <bool> -s <float>
c) Example 3. It computes the distance to itself. With differents types of DTW, distances and constraints.
dtwParallel exampleData/Data/E0/X_train.npy
[out]: [[0.00000000e+00 6.36756028e+17 2.94977907e+16 9.96457616e+17]
[6.36756028e+17 0.00000000e+00 6.07258237e+17 1.63321364e+18]
[2.94977907e+16 6.07258237e+17 0.00000000e+00 1.02595541e+18]
[9.96457616e+17 1.63321364e+18 1.02595541e+18 0.00000000e+00]]
dtwParallel exampleData/Data/E0/X_train.npy -t "i"
[out]: [[0.00000000e+00 1.68469810e+18 7.80438184e+16 2.63637904e+18]
[1.68469810e+18 0.00000000e+00 1.60665428e+18 4.32107714e+18]
[7.80438184e+16 1.60665428e+18 0.00000000e+00 2.71442286e+18]
[2.63637904e+18 4.32107714e+18 2.71442286e+18 0.00000000e+00]]
dtwParallel exampleData/Data/E0/X_train.npy -c "itakura" -d "square_euclidean_distance"
[out]: [[0.00000000e+00 5.79226055e+34 1.24302808e+32 1.41846826e+35]
[5.79226055e+34 0.00000000e+00 5.26803666e+34 3.81055258e+35]
[1.24302808e+32 5.26803666e+34 0.00000000e+00 1.50369214e+35]
[1.41846826e+35 3.81055258e+35 1.50369214e+35 0.00000000e+00]]
d) Example 4. We compute the distance matrix DTW between X and Y.
dtwParallel exampleData/Data/E0/X_train.npy exampleData/Data/E0/X_test.npy
[out]: [[2.47396197e+16 9.07388652e+17 2.23522660e+17 1.68210525e+18]
[6.12016408e+17 1.54414468e+18 8.60278687e+17 2.31886127e+18]
[4.75817098e+15 9.36886443e+17 2.53020450e+17 1.71160304e+18]
[1.02119724e+18 8.90689643e+16 7.72934957e+17 6.85647630e+17]]
e) Example 5. We select two types of distance: gower distance and norm 1. We obtain the distance matrix DTW between X and Y.
dtwParallel exampleData/Data/E0/X_train.npy exampleData/Data/E0/X_test.npy -d "gower"
[out]: [[1.7200027 2.16000016 1.92000033 2.53999992]
[1.59999973 1.79999978 1.83999987 2.27999987]
[0.5399895 1.52000002 1.04000024 1.66 ]
[0.70000006 1.57999993 1.10000018 1.69999999]]
dtwParallel exampleData/Data/E0/X_train.npy exampleData/Data/E0/X_test.npy -d "norm1"
[out]: [[4.16145813e+08 2.52026200e+09 1.25086315e+09 3.43143363e+09]
[2.06981034e+09 3.28770631e+09 2.45396634e+09 4.02889922e+09]
[1.82502594e+08 2.56089928e+09 1.33084302e+09 3.46139008e+09]
[2.67364557e+09 7.89609239e+08 2.32605776e+09 2.19078374e+09]]
f) Example 6. Compute the gower distance between X and Y, and we select the number of threads.
dtwParallel exampleData/Data/E0/X_train.npy exampleData/Data/E0/X_test.npy -d "gower" -n 12
[out]: [[1.7200027 2.16000016 1.92000033 2.53999992]
[1.59999973 1.79999978 1.83999987 2.27999987]
[0.5399895 1.52000002 1.04000024 1.66 ]
[0.70000006 1.57999993 1.10000018 1.69999999]]
g) Example 7. Compute the gower distance between X and Y, then we obtain the output per file.
dtwParallel exampleData/Data/E0/X_train.npy exampleData/Data/E0/X_test.npy -d "gower" -n 12 -of True
[out]: output.csv
h) Example 8. We calculate the distance between X and Y, and transform to Gaussian kernel with sigma_kernel=0.5. We return the distance matrix and the kernel.
dtwParallel exampleData/Data/E0/X_train.npy -k True -s 1000000000
[out]: (array([[0.00000000e+00, 6.36756028e+17, 2.94977907e+16, 9.96457616e+17],
[6.36756028e+17, 0.00000000e+00, 6.07258237e+17, 1.63321364e+18],
[2.94977907e+16, 6.07258237e+17, 0.00000000e+00, 1.02595541e+18],
[9.96457616e+17, 1.63321364e+18, 1.02595541e+18, 0.00000000e+00]]),
array([[1. , 0.7273278 , 0.98535934, 0.60760589],
[0.7273278 , 1. , 0.73813458, 0.44192866],
[0.98535934, 0.73813458, 1. , 0.59871014],
[0.60760589, 0.44192866, 0.59871014, 1. ]]))
Remarks:
- You can run from any repository, but be careful! The .npy file must be found.
The generic example is shown below:
from dtwParallel import dtw_functions
# For Univariate Time Series
dtw_functions.dtw(x, y, type_dtw, local_dissimilarity, MTS, get_visualization, check_errors)
# For Multivariate Time Series
dtw_functions.dtw_tensor_3d(X_1, X_2, object)
The examples shown below are executed in jupyter-notebook. Code available in exampleData/CodeExamples/E1_SyntheticData (https://github.com/oscarescuderoarnanz/dtwParallel/tree/main/exampleData/CodeExamples_new/E1_SyntheticData). These examples can be executed in any Integrated Development Environment.
Example 1. For univariate time series.
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [1,2,3]
y = [0,0,1]
dtw_functions.dtw(x,y,local_dissimilarity=d.euclidean)
[out]: 5.0
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [1,2,3,3,4,5,6,7]
y = [0,1,5,7,1,8,1,4]
dtw_functions.dtw(x,y,local_dissimilarity=d.euclidean)
[out]: 22.0
from dtwParallel import dtw_functions
# For Univariate Time Series
x = [1,2,3,3,4,5,6,7]
y = [0,1,5,7,1,8,1,4]
dtw_functions.dtw(x,y,local_dissimilarity="norm1")
[out]: 12.84
import pandas as pd
import numpy as np
from dtwParallel import dtw_functions
# Use of dataframes with 1D (UTS) as entry data
x = pd.DataFrame(np.random.randint(0,10, size=(1,8)))
y = pd.DataFrame(np.random.randint(0,10, size=(1,8)))
dtw_functions.dtw(x, y, n_threads=8)
[out]: Result with random dependency.
import pandas as pd
import numpy as np
from dtwParallel import dtw_functions
# Use of dataframes with 2D (MTS) as entry data
x = pd.DataFrame([np.random.randn(10), np.random.randn(10)])
y = pd.DataFrame([np.random.randn(10), np.random.randn(10)])
dtw_functions.dtw(x, y, MTS=True, n_threads=8)
[out]: Result with random dependency.
import pandas as pd
import numpy as np
from dtwParallel import dtw_functions
# Use of dataframes with 1D (UTS) as entry data
x = pd.DataFrame(np.random.randn(10)).T
y = pd.DataFrame(np.random.randn(10)).T
dtw_functions.dtw(x,y,n_threads=8)
[out]: Result with random dependency.
import pandas as pd
import numpy as np
from dtwParallel import dtw_functions
# Use of pd.Series as entry data
x = pd.Series(np.random.randn(10))
y = pd.Series(np.random.randn(10))
dtw_functions.dtw(x,y,local_dissimilarity="norm2")
[out]: Result with random dependency.
Example 2. For univariate time series with different lengths.
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [1,2,3,5,8,9,5,4,2]
y = [1,0,1,0,1,1]
dtw_functions.dtw(x, y, local_dissimilarity=d.euclidean)
[out]: 32.0
Example 3. For univariate time series with visualization (cost matrix, path and alignment between a pair of time series).
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [4,2,8,4,5]
y = [0,1,0,8,9]
dtw_functions.dtw(x, y, local_dissimilarity=d.euclidean, get_visualization=True)
[out]: 15.0
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [4,2,8,4,5,1,3,5,2,5,7,8,4,5,6,7]
y = [0,1,0,8,9,1,3,2,4,3,5,6,7,8,5,6]
dtw_functions.dtw(x, y, constrained_path_search=None,local_dissimilarity=d.euclidean, get_visualization=True)
[out]: 20.0
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [4,2,8,4,5,1,3,5,2,5,7,8,4,5,6,7]
y = [0,1,0,8,9,1,3,2,4,3,5,6,7,8,5,6]
dtw_functions.dtw(x, y, constrained_path_search="itakura",local_dissimilarity=d.euclidean, get_visualization=True)
[out]: 24.0
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [4,2,8,4,5,1,3,5,2,5,7,8,4,5,6,7]
y = [0,1,0,8,9,1,3,2,4,3,5,6,7,8,5,6]
dtw_functions.dtw(x, y, constrained_path_search="sakoe_chiba",local_dissimilarity=d.euclidean, get_visualization=True)
[out]: 25.0
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
# For Univariate Time Series
x = [4,2,8,4,5,1,3,5,2,5,7,8,4,5,6,7]
y = [0,1,0,8,9,1,3,2,4,3,5]
dtw_functions.dtw(x, y, local_dissimilarity=d.euclidean, get_visualization=True)
[out]: 26.0
Example 4. For multivariate time series.
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
import numpy as np
X = np.array([[3,5,8],
[5, 1,9]])
Y = np.array([[2, 0,8],
[4, 3,8]])
dtw_functions.dtw(X, Y, type_dtw="d", local_dissimilarity=d.euclidean, MTS=True)
[out]: 7.548509256375962
Example 5. For multivariate time series with different lengths.
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
import numpy as np
X = np.array([[3, 5, 8],
[5, 1, 9],
[0, 1, 1],
[1, 4, 2]])
Y = np.array([[2, 0,8],
[4, 3,8]])
dtw_functions.dtw(X, Y, type_dtw="d", local_dissimilarity=d.euclidean, MTS=True)
[out]: 22.546443515422986
Example 6. For multivariate time series with visualization.
from dtwParallel import dtw_functions
from scipy.spatial import distance as d
import numpy as np
X = np.array([[3, 5, 8],
[0, 1, 3],
[1, 2, 3]])
Y = np.array([[2, 0, 8],
[1, 3, 8],
[4, 8, 12]])
dtw_functions.dtw(X, Y, type_dtw="d", local_dissimilarity=d.euclidean, MTS=True, get_visualization=True)
Remark: In the case of MTS, it is not possible to display the alignment between the time series.
[out]: 21.801217248966267
Example 7. For a tensor formed by N x T x F, where N is the number of observations, T the time instants and F the characteristics.
import numpy as np
from dtwParallel import dtw_functions as dtw
x = np.load('../../Data/E0/X_train.npy')
y = np.load('../../Data/E0/X_test.npy')
class Input:
def __init__(self):
self.check_errors = False
self.type_dtw = "d"
self.constrained_path_search = None
self.MTS = True
self.regular_flag = False
self.n_threads = -1
self.local_dissimilarity = "gower"
self.visualization = False
self.output_file = True
self.dtw_to_kernel = False
self.sigma_kernel = 1
self.itakura_max_slope = None
self.sakoe_chiba_radius = None
input_obj = Input()
# API call.
dtw.dtw_tensor_3d(x, y, input_obj)
[out]:
array([[1.7200027 , 2.16000016, 1.92000033, 2.53999992],
[1.59999973, 1.79999978, 1.83999987, 2.27999987],
[0.5399895 , 1.52000002, 1.04000024, 1.66 ],
[0.70000006, 1.57999993, 1.10000018, 1.69999999]])
import numpy as np
from dtwParallel import dtw_functions as dtw
x = np.load('../../Data/E0/X_train.npy')
y = np.load('../../Data/E0/X_test.npy')
class Input:
def __init__(self):
self.check_errors = False
self.type_dtw = "i"
self.constrained_path_search = None
self.MTS = True
self.regular_flag = False
self.n_threads = -1
self.local_dissimilarity = "gower"
self.visualization = False
self.output_file = True
self.dtw_to_kernel = False
self.sigma_kernel = 1
self.itakura_max_slope = None
self.sakoe_chiba_radius = None
input_obj = Input()
# API call.
dtw.dtw_tensor_3d(x, y, input_obj)
[out]:
array([[ 86.0001335 , 108.00000931, 96.00001545, 126.99999504],
[ 79.99998522, 89.99999088, 91.99999337, 113.9999931 ],
[ 26.99947403, 76.0000011 , 52.00001171, 82.99999923],
[ 35.00000282, 78.99999571, 55.00000872, 84.99999817]]))
import numpy as np
from dtwParallel import dtw_functions as dtw
x = np.load('../../Data/E0/X_train.npy')
y = np.load('../../Data/E0/X_test.npy')
class Input:
def __init__(self):
self.check_errors = False
self.type_dtw = "d"
self.constrained_path_search = None
self.MTS = True
self.regular_flag = False
self.n_threads = -1
self.local_dissimilarity = "norm2"
self.visualization = False
self.output_file = True
self.dtw_to_kernel = False
self.sigma_kernel = 1
self.itakura_max_slope = None
self.sakoe_chiba_radius = None
input_obj = Input()
# API call.
dtw.dtw_tensor_3d(x, y, input_obj)
[out]:
array([[2.47396197e+16, 9.07388652e+17, 2.23522660e+17, 1.68210525e+18],
[6.12016408e+17, 1.54414468e+18, 8.60278687e+17, 2.31886127e+18],
[4.75817098e+15, 9.36886443e+17, 2.53020450e+17, 1.71160304e+18],
[1.02119724e+18, 8.90689643e+16, 7.72934957e+17, 6.85647630e+17]])
import numpy as np
from dtwParallel import dtw_functions as dtw
x = np.load('../../Data/E0/X_train.npy')
y = np.load('../../Data/E0/X_test.npy')
class Input:
def __init__(self):
self.check_errors = False
self.type_dtw = "d"
self.constrained_path_search = "itakura"
self.MTS = True
self.regular_flag = False
self.n_threads = -1
self.local_dissimilarity = "square_euclidean_distance"
self.visualization = False
self.output_file = True
self.dtw_to_kernel = False
self.sigma_kernel = 1
self.itakura_max_slope = None
self.sakoe_chiba_radius = None
input_obj = Input()
# API call.
dtw.dtw_tensor_3d(x, y, input_obj)
[out]:
array([[8.74355404e+31, 1.17622024e+35, 7.13748276e+33, 4.04211152e+35],
[5.35091548e+34, 3.40626113e+35, 1.05725631e+35, 7.68159658e+35],
[3.23431302e+30, 1.25393744e+35, 9.14562117e+33, 4.18512137e+35],
[1.48977685e+35, 1.13332577e+33, 8.53469211e+34, 6.71589533e+34]])
For any modification of the default parameters, the configuration.ini
file can be edited.
The default values are:
[DEFAULT]
check_errors = False
type_dtw = d
constrained_path_search = None
mts = False
regular_flag = 0
local_dissimilarity = euclidean
n_threads = -1
visualization = False
output_file = False
name_file = output
dtw_to_kernel = False
sigma_kernel = 1
itakura_max_slope = None
sakoe_chiba_radius = None
I have used data from yahoo finance (https://finance.yahoo.com/) of 505 companies, available in a .zip file. The folder where the data is located is exampleData/Data/E2_FinanceData (https://github.com/oscarescuderoarnanz/dtwParallel/tree/main/exampleData/Data/E2_FinanceData). The code needed to process the information of each of the 505 companies, obtaining the tensor input to the package is located in exampleData/CodeExamples/E2_FinanceData/tensorGenerator (https://github.com/oscarescuderoarnanz/dtwParallel/tree/main/exampleData/CodeExamples_new/E2_FinanceData).
The computation of the distance matrix has been carried out using dependent and independent DTW varying the number of threads. Code of this example is available at exampleData/Code/E2_FinanceData (https://github.com/oscarescuderoarnanz/dtwParallel/tree/main/exampleData/CodeExamples_new/E2_FinanceData).
Code available for this example at exampleData/CodeExamples_new/plot_timeExamples_V2.ipynb (https://github.com/oscarescuderoarnanz/dtwParallel/tree/main/exampleData/CodeExamples_new/E2_FinanceData).
Experiment 3. We performed a computational time comparison by increasing the length of the time series.
Note that the distances used in dtwParallel and tslearn are the same.
If you use dtwParallel
in your research papers, please refer to it using following reference:
@article{escudero2023dtwparallel,
title={dtwParallel: A Python package to efficiently compute dynamic time warping between time series},
author={Escudero-Arnanz, {\'O}scar and Marques, Antonio G and Soguero-Ruiz, Cristina and Mora-Jim{\'e}nez, Inmaculada and Robles, Gregorio},
journal={SoftwareX},
volume={22},
pages={101364},
year={2023},
publisher={Elsevier}
}
In case of using the itakura parrallelogram
or sakoe_chiba band
variants, we ask you to cite as well the following work, as we have taken this functionality granted from tslearn:
@article{JMLR:v21:20-091,
author = {Romain Tavenard and Johann Faouzi and Gilles Vandewiele and
Felix Divo and Guillaume Androz and Chester Holtz and
Marie Payne and Roman Yurchak and Marc Ru{\ss}wurm and
Kushal Kolar and Eli Woods},
title = {Tslearn, A Machine Learning Toolkit for Time Series Data},
journal = {Journal of Machine Learning Research},
year = {2020},
volume = {21},
number = {118},
pages = {1-6},
url = {http://jmlr.org/papers/v21/20-091.html}
}
dtwParallel
is released under the terms of the BSD 2-Clause license.