Skip to content
This repository has been archived by the owner on Jan 6, 2025. It is now read-only.
/ plant-segmentation Public archive

Plant segmentation experiments sample using RFlow

License

Notifications You must be signed in to change notification settings

otaviog/plant-segmentation

Repository files navigation

Plant Segmentation Experiments

A simple project to demonstrate how to use RFlow to create a semantic segmentation experiment. The goal is to segment leaves from the LEAF SEGMENTATION AND COUNTING CHALLENGES For simplicity, this sample does not count the leaves. We evaluate 4 kinds of architectures: UNet (Resnet32), UNet (mobilenet), FPN (Resnet32) and Linknet (Resnet32), supplied by the Segmentation Models Pytorch (SMP)

The workflows are coded on the workflow.py file. The data workflow for loading and splitting the image set:

  • dataset: Load the dataset from the directory dataset.
  • dataset_split: Split the dataset into train, validation and test sets.
  • train_dataset_view: Opens a viewer to navigate in the train set of images and masks.
    • Ex.: rflow data run train_dataset_view
  • test_dataset_view: Opens a viewer to navigate in the test set of images and masks.

The unet, unet_mobilenet, fpn and linknet workflows contain the experiments for each architecture. They have the same nodes, the bellow diagram is the one for Unet:

Unet graph

  • train_dataset: Creates an augmented version of the training dataset.
  • train_dataset_view: Opens a viewer to navigate in the train augmented set of images and masks.
  • model: Creates the network model for training.
  • untrain_test: Opens a viewer with predictions from the model without training. Useful to debug.
  • train: Starts training. See the image for the used training parameters.
    • Ex.: rflow unet run train
  • predict_test_set: Opens a viewer with predictions using the trained model with images from the test set.
    • Ex.: rflow unet run predict_test_set
  • predict_image: Predict using the trained model the segmentation of an arbitrary image passed via the command line, parameter --sample-image.
  • metrics: Evaluates the trained model with various metrics on the test set.

The report workflow:

  • all: Prints a table with the metrics (node metrics) from all experiments. The result should be similar to the following:
unet unet_mobilenet fpn linknet
iou_score 0.9375 0.9481 0.9410 0.9348
accuracy 0.9934 0.9947 0.9940 0.9934
precision 0.9543 0.9707 0.9666 0.9703
recall 0.9817 0.9760 0.9727 0.9624

Executing

Download the dataset LEAF COUNTING CHALLENGE (https://www.plant-phenotyping.org/datasets-home), and extract it on the dataset directory. The file structure should be as the following:

dataset
├── CVPPP2017_LCC_training
│   ├── LCC 2017 data description and further details.pdf
│   └── training
│       ├── A1
│       │   ├── A1.csv
│       │   ├── plant001_centers.png
│       │   ├── plant001_fg.png
│       │   ├── plant001_rgb.png
...
│       │   ├── plant161_centers.png
│       │   ├── plant161_fg.png
│       │   └── plant161_rgb.png
│       ├── A2
│       │   ├── A2.csv
│       │   ├── plant001_centers.png
│       │   ├── plant001_fg.png
│       │   ├── plant001_rgb.png
...
│       │   ├── plant039_centers.png
│       │   ├── plant039_fg.png
│       │   └── plant039_rgb.png
│       ├── A3
│       │   ├── A3.csv
│       │   ├── plant001_centers.png
│       │   ├── plant001_fg.png
│       │   ├── plant001_rgb.png
...
│       │   ├── plant027_centers.png
│       │   ├── plant027_fg.png
│       │   └── plant027_rgb.png
│       └── A4
│           ├── A4.csv
│           ├── plant0001_centers.png
│           ├── plant0001_fg.png
│           ├── plant0001_rgb.png
...
│           ├── plant0857_centers.png
│           ├── plant0857_fg.png
│           └── plant0857_rgb.png
...

Virtual environment

Required/Tested system:

  • Ubuntu>=18.04
  • Python>=3.7

Create your virtual environment or conda environment, and install the requirements:

(env-name)$ pip install -r requirements.txt
(env-name)$ pip install opencv-python==4.4.0.46
(env-name)$ pip install module

To train the resnet:

$ rflow run fpn train

To predict with an arbitrary image:

$ rflow fpn run predict_image --sample-image dataset/resources/640px-Arabidopsis_Thaliana_planted_in_Laboratory.jpeg

If the train was not executed yet, it automatically will by rflow.

Docker

$ docker run --gpus all\
    --volume=`pwd`/dataset:/workspace/plant-segmentation/dataset\
    --user=`id -u`:`id -g`\
    --env="DISPLAY"\
    --env NVIDIA_DRIVER_CAPABILITIES=all\
    --env XAUTHORITY\
    --volume="/etc/group:/etc/group:ro"\
    --volume="/etc/passwd:/etc/passwd:ro"\
    --volume="/etc/shadow:/etc/shadow:ro"\
    --volume="/etc/sudoers.d:/etc/sudoers.d:ro"\
    --volume="/tmp/.X11-unix:/tmp/.X11-unix:rw"\
    --volume=${HOME}:${HOME}\
    --ipc=host\
    -it otaviog/plant-segmentation /bin/bash	
(docker) $ rflow mobilenet run predict_test_set

Or use the rflow-docker, script. This is a wrapper that calls rflow from a docker container mapping the current folder to the docker.

$ ./rflow-docker fpn run predict_image --sample-image dataset/resources/640px-Arabidopsis_Thaliana_planted_in_Laboratory.jpeg