Skip to content

Commit

Permalink
[Minor] Torchify timenet (#1620)
Browse files Browse the repository at this point in the history
* Convert to tensors

* clarify ID drop

* fixed tests

* added vectorization

* added sequential components

* fixed linters

* fixed cml plotting

* added newlines to CML markdowns

* fixed newlines rendering

---------

Co-authored-by: ourownstory <ourownstory@users.noreply.github.com>
  • Loading branch information
MaiBe-ctrl and ourownstory authored Jul 31, 2024
1 parent 4cf7444 commit 456d495
Show file tree
Hide file tree
Showing 2 changed files with 94 additions and 77 deletions.
25 changes: 23 additions & 2 deletions .github/workflows/metrics.yml
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ on:
- main
- develop
workflow_dispatch:

jobs:
metrics:
runs-on: ubuntu-latest # container: docker://ghcr.io/iterative/cml:0-dvc2-base1
Expand All @@ -19,24 +20,32 @@ jobs:
uses: actions/checkout@v3
with:
ref: ${{ github.event.pull_request.head.sha }}

- name: Install Python 3.12
uses: actions/setup-python@v5
with:
python-version: "3.12"

- name: Setup NodeJS (for CML)
uses: actions/setup-node@v3 # For CML
with:
node-version: '16'

- name: Setup CML
uses: iterative/setup-cml@v1

- name: Install Poetry
uses: snok/install-poetry@v1

- name: Install Dependencies
run: poetry install --no-interaction --no-root --with=pytest,metrics --without=dev,docs,linters

- name: Install Project
run: poetry install --no-interaction --with=pytest,metrics --without=dev,docs,linters

- name: Train model
run: poetry run pytest tests/test_model_performance.py -n 1 --durations=0

- name: Download metrics from main
uses: dawidd6/action-download-artifact@v2
with:
Expand All @@ -45,28 +54,40 @@ jobs:
name: metrics
path: tests/metrics-main/
if_no_artifact_found: warn

- name: Open Benchmark Report
run: echo "## Model Benchmark" >> report.md

- name: Write Benchmark Report
run: poetry run python tests/metrics/compareMetrics.py >> report.md

- name: Publish Report with CML
env:
REPO_TOKEN: ${{ secrets.GITHUB_TOKEN }}
run: |
echo "<details>\n<summary>Model training plots</summary>\n" >> report.md
echo "<details><summary>Model training plots</summary>" >> report.md
echo "" >> report.md
echo "## Model Training" >> report.md
echo "" >> report.md
echo "### PeytonManning" >> report.md
cml asset publish tests/metrics/PeytonManning.svg --md >> report.md
echo "" >> report.md
echo "### YosemiteTemps" >> report.md
cml asset publish tests/metrics/YosemiteTemps.svg --md >> report.md
echo "" >> report.md
echo "### AirPassengers" >> report.md
cml asset publish tests/metrics/AirPassengers.svg --md >> report.md
echo "" >> report.md
echo "### EnergyPriceDaily" >> report.md
cml asset publish tests/metrics/EnergyPriceDaily.svg --md >> report.md
echo "\n</details>" >> report.md
echo "" >> report.md
echo "</details>" >> report.md
echo "" >> report.md
cml comment update --target=pr report.md # Post reports as comments in GitHub PRs
cml check create --title=ModelReport report.md # update status of check in PR
- name: Upload metrics if on main
if: github.ref == 'refs/heads/main'
uses: actions/upload-artifact@v3
with:
name: metrics
Expand Down
146 changes: 71 additions & 75 deletions neuralprophet/time_net.py
Original file line number Diff line number Diff line change
Expand Up @@ -268,28 +268,34 @@ def __init__(
self.ar_layers = ar_layers
self.max_lags = max_lags
if self.n_lags > 0:
self.ar_net = nn.ModuleList()
ar_net_layers = []
d_inputs = self.n_lags
for d_hidden_i in self.ar_layers:
self.ar_net.append(nn.Linear(d_inputs, d_hidden_i, bias=True))
ar_net_layers.append(nn.Linear(d_inputs, d_hidden_i, bias=True))
ar_net_layers.append(nn.ReLU())
d_inputs = d_hidden_i
# final layer has input size d_inputs and output size equal to no. of forecasts * no. of quantiles
self.ar_net.append(nn.Linear(d_inputs, self.n_forecasts * len(self.quantiles), bias=False))
ar_net_layers.append(nn.Linear(d_inputs, self.n_forecasts * len(self.quantiles), bias=False))
self.ar_net = nn.Sequential(*ar_net_layers)
for lay in self.ar_net:
nn.init.kaiming_normal_(lay.weight, mode="fan_in")
if isinstance(lay, nn.Linear):
nn.init.kaiming_normal_(lay.weight, mode="fan_in")

# Lagged regressors
self.lagged_reg_layers = lagged_reg_layers
self.config_lagged_regressors = config_lagged_regressors
if self.config_lagged_regressors is not None:
self.covar_net = nn.ModuleList()
covar_net_layers = []
d_inputs = sum([covar.n_lags for _, covar in self.config_lagged_regressors.items()])
for d_hidden_i in self.lagged_reg_layers:
self.covar_net.append(nn.Linear(d_inputs, d_hidden_i, bias=True))
covar_net_layers.append(nn.Linear(d_inputs, d_hidden_i, bias=True))
covar_net_layers.append(nn.ReLU())
d_inputs = d_hidden_i
self.covar_net.append(nn.Linear(d_inputs, self.n_forecasts * len(self.quantiles), bias=False))
covar_net_layers.append(nn.Linear(d_inputs, self.n_forecasts * len(self.quantiles), bias=False))
self.covar_net = nn.Sequential(*covar_net_layers)
for lay in self.covar_net:
nn.init.kaiming_normal_(lay.weight, mode="fan_in")
if isinstance(lay, nn.Linear):
nn.init.kaiming_normal_(lay.weight, mode="fan_in")

# Regressors
self.config_regressors = config_regressors
Expand All @@ -310,7 +316,9 @@ def __init__(
def ar_weights(self) -> torch.Tensor:
"""sets property auto-regression weights for regularization. Update if AR is modelled differently"""
# TODO: this is wrong for deep networks, use utils_torch.interprete_model
return self.ar_net[0].weight
for layer in self.ar_net:
if isinstance(layer, nn.Linear):
return layer.weight

def get_covar_weights(self, covar_input=None) -> torch.Tensor:
"""
Expand Down Expand Up @@ -393,49 +401,50 @@ def _compute_quantile_forecasts_from_diffs(self, diffs: torch.Tensor, predict_mo
dim (batch, n_forecasts, no_quantiles)
final forecasts
"""
if len(self.quantiles) > 1:
# generate the actual quantile forecasts from predicted differences
if any(quantile > 0.5 for quantile in self.quantiles):
quantiles_divider_index = next(i for i, quantile in enumerate(self.quantiles) if quantile > 0.5)
else:
quantiles_divider_index = len(self.quantiles)

n_upper_quantiles = diffs.shape[-1] - quantiles_divider_index
n_lower_quantiles = quantiles_divider_index - 1

out = torch.zeros_like(diffs)
out[:, :, 0] = diffs[:, :, 0] # set the median where 0 is the median quantile index

if n_upper_quantiles > 0: # check if upper quantiles exist
upper_quantile_diffs = diffs[:, :, quantiles_divider_index:]
if predict_mode: # check for quantile crossing and correct them in predict mode
upper_quantile_diffs[:, :, 0] = torch.max(
torch.tensor(0, device=self.device), upper_quantile_diffs[:, :, 0]
)
for i in range(n_upper_quantiles - 1):
next_diff = upper_quantile_diffs[:, :, i + 1]
diff = upper_quantile_diffs[:, :, i]
upper_quantile_diffs[:, :, i + 1] = torch.max(next_diff, diff)
out[:, :, quantiles_divider_index:] = (
upper_quantile_diffs + diffs[:, :, 0].unsqueeze(dim=2).repeat(1, 1, n_upper_quantiles).detach()
) # set the upper quantiles

if n_lower_quantiles > 0: # check if lower quantiles exist
lower_quantile_diffs = diffs[:, :, 1:quantiles_divider_index]
if predict_mode: # check for quantile crossing and correct them in predict mode
lower_quantile_diffs[:, :, -1] = torch.max(
torch.tensor(0, device=self.device), lower_quantile_diffs[:, :, -1]
)
for i in range(n_lower_quantiles - 1, 0, -1):
next_diff = lower_quantile_diffs[:, :, i - 1]
diff = lower_quantile_diffs[:, :, i]
lower_quantile_diffs[:, :, i - 1] = torch.max(next_diff, diff)
lower_quantile_diffs = -lower_quantile_diffs
out[:, :, 1:quantiles_divider_index] = (
lower_quantile_diffs + diffs[:, :, 0].unsqueeze(dim=2).repeat(1, 1, n_lower_quantiles).detach()
) # set the lower quantiles

if len(self.quantiles) <= 1:
return diffs
# generate the actual quantile forecasts from predicted differences
if any(quantile > 0.5 for quantile in self.quantiles):
quantiles_divider_index = next(i for i, quantile in enumerate(self.quantiles) if quantile > 0.5)
else:
out = diffs
quantiles_divider_index = len(self.quantiles)

n_upper_quantiles = diffs.shape[-1] - quantiles_divider_index
n_lower_quantiles = quantiles_divider_index - 1

out = torch.zeros_like(diffs)
out[:, :, 0] = diffs[:, :, 0] # set the median where 0 is the median quantile index

if n_upper_quantiles > 0: # check if upper quantiles exist
upper_quantile_diffs = diffs[:, :, quantiles_divider_index:]
if predict_mode: # check for quantile crossing and correct them in predict mode
upper_quantile_diffs[:, :, 0] = torch.max(
torch.tensor(0, device=self.device), upper_quantile_diffs[:, :, 0]
)
for i in range(n_upper_quantiles - 1):
next_diff = upper_quantile_diffs[:, :, i + 1]
diff = upper_quantile_diffs[:, :, i]
upper_quantile_diffs[:, :, i + 1] = torch.max(next_diff, diff)
out[:, :, quantiles_divider_index:] = (
upper_quantile_diffs + diffs[:, :, 0].unsqueeze(dim=2).repeat(1, 1, n_upper_quantiles).detach()
) # set the upper quantiles

if n_lower_quantiles > 0: # check if lower quantiles exist
lower_quantile_diffs = diffs[:, :, 1:quantiles_divider_index]
if predict_mode: # check for quantile crossing and correct them in predict mode
lower_quantile_diffs[:, :, -1] = torch.max(
torch.tensor(0, device=self.device), lower_quantile_diffs[:, :, -1]
)
for i in range(n_lower_quantiles - 1, 0, -1):
next_diff = lower_quantile_diffs[:, :, i - 1]
diff = lower_quantile_diffs[:, :, i]
lower_quantile_diffs[:, :, i - 1] = torch.max(next_diff, diff)
lower_quantile_diffs = -lower_quantile_diffs
out[:, :, 1:quantiles_divider_index] = (
lower_quantile_diffs + diffs[:, :, 0].unsqueeze(dim=2).repeat(1, 1, n_lower_quantiles).detach()
) # set the lower quantiles

return out

def scalar_features_effects(self, features: torch.Tensor, params: nn.Parameter, indices=None) -> torch.Tensor:
Expand Down Expand Up @@ -474,14 +483,9 @@ def auto_regression(self, lags: Union[torch.Tensor, float]) -> torch.Tensor:
torch.Tensor
Forecast component of dims: (batch, n_forecasts)
"""
x = lags
for i in range(len(self.ar_layers) + 1):
if i > 0:
x = nn.functional.relu(x)
x = self.ar_net[i](x)

x = self.ar_net(lags)
# segment the last dimension to match the quantiles
x = x.reshape(x.shape[0], self.n_forecasts, len(self.quantiles))
x = x.view(x.shape[0], self.n_forecasts, len(self.quantiles))
return x

def forward_covar_net(self, covariates):
Expand All @@ -501,13 +505,9 @@ def forward_covar_net(self, covariates):
x = torch.cat([covar for _, covar in covariates.items()], axis=1)
else:
x = covariates
for i in range(len(self.lagged_reg_layers) + 1):
if i > 0:
x = nn.functional.relu(x)
x = self.covar_net[i](x)

x = self.covar_net(x)
# segment the last dimension to match the quantiles
x = x.reshape(x.shape[0], self.n_forecasts, len(self.quantiles))
x = x.view(x.shape[0], self.n_forecasts, len(self.quantiles))
return x

def forward(self, inputs: Dict, meta: Dict = None, compute_components_flag: bool = False) -> torch.Tensor:
Expand Down Expand Up @@ -880,8 +880,7 @@ def _get_time_based_sample_weight(self, t):
end_w = self.config_train.newer_samples_weight
start_t = self.config_train.newer_samples_start
time = (t.detach() - start_t) / (1.0 - start_t)
time = torch.maximum(torch.zeros_like(time), time)
time = torch.minimum(torch.ones_like(time), time) # time = 0 to 1
time = torch.clamp(time, 0.0, 1.0) # time = 0 to 1
time = np.pi * (time - 1.0) # time = -pi to 0
time = 0.5 * torch.cos(time) + 0.5 # time = 0 to 1
# scales end to be end weight times bigger than start weight
Expand Down Expand Up @@ -1019,24 +1018,21 @@ class DeepNet(nn.Module):
def __init__(self, d_inputs, d_outputs, lagged_reg_layers=[]):
# Perform initialization of the pytorch superclass
super(DeepNet, self).__init__()
self.layers = nn.ModuleList()
layers = []
for d_hidden_i in lagged_reg_layers:
self.layers.append(nn.Linear(d_inputs, d_hidden_i, bias=True))
layers.append(nn.Linear(d_inputs, d_hidden_i, bias=True))
layers.append(nn.ReLU())
d_inputs = d_hidden_i
self.layers.append(nn.Linear(d_inputs, d_outputs, bias=True))
layers.append(nn.Linear(d_inputs, d_outputs, bias=True))
self.layers = nn.Sequential(*layers)
for lay in self.layers:
nn.init.kaiming_normal_(lay.weight, mode="fan_in")

def forward(self, x):
"""
This method defines the network layering and activation functions
"""
activation = nn.functional.relu
for i in range(len(self.layers)):
if i > 0:
x = activation(x)
x = self.layers[i](x)
return x
return self.layers(x)

@property
def ar_weights(self):
Expand Down

0 comments on commit 456d495

Please sign in to comment.