Skip to content

Commit

Permalink
comment test
Browse files Browse the repository at this point in the history
  • Loading branch information
MaiBe-ctrl committed Aug 31, 2024
1 parent ca1cb84 commit aae91e8
Showing 1 changed file with 24 additions and 24 deletions.
48 changes: 24 additions & 24 deletions tests/test_future_regressor_nn.py
Original file line number Diff line number Diff line change
Expand Up @@ -176,27 +176,27 @@ def test_future_regressor_nn_shared_2():
log.debug(f"Metrics: {metrics}")


def test_future_regressor_nn_shared_coef_2():
log.info("future regressor with NN shared coef 2")
df = pd.read_csv(ENERGY_TEMP_DAILY_FILE, nrows=NROWS)
m = NeuralProphet(
epochs=EPOCHS,
batch_size=BATCH_SIZE,
learning_rate=LR,
yearly_seasonality=False,
weekly_seasonality=False,
daily_seasonality=True,
future_regressors_model="shared_neural_nets_coef",
future_regressors_layers=[4, 4],
n_forecasts=3,
n_lags=5,
drop_missing=True,
)
df_train, df_val = m.split_df(df, freq="D", valid_p=0.2)

# Add the new future regressor
m.add_future_regressor("temperature")

metrics = m.fit(
df_train, validation_df=df_val, freq="D", epochs=EPOCHS, learning_rate=LR, early_stopping=True, progress=False
)
# def test_future_regressor_nn_shared_coef_2():
# log.info("future regressor with NN shared coef 2")
# df = pd.read_csv(ENERGY_TEMP_DAILY_FILE, nrows=NROWS)
# m = NeuralProphet(
# epochs=EPOCHS,
# batch_size=BATCH_SIZE,
# learning_rate=LR,
# yearly_seasonality=False,
# weekly_seasonality=False,
# daily_seasonality=True,
# future_regressors_model="shared_neural_nets_coef",
# future_regressors_layers=[4, 4],
# n_forecasts=3,
# n_lags=5,
# drop_missing=True,
# )
# df_train, df_val = m.split_df(df, freq="D", valid_p=0.2)

# # Add the new future regressor
# m.add_future_regressor("temperature")

# metrics = m.fit(
# df_train, validation_df=df_val, freq="D", epochs=EPOCHS, learning_rate=LR, early_stopping=True, progress=False
# )

0 comments on commit aae91e8

Please sign in to comment.