Here, you'll find the process of building a scalable price tracker for Best Buy, one of the largest e-commerce websites for electronics.
The tutorial uses Python and Oxylabs’ Best Buy API (a part of Web Scraper API). You can get a 1-week free trial by registering on the dashboard.
For visualizations and in-depth explanations, see our blog post.
pip install pandas
pip install matplotlib
import requests
USERNAME = "username"
PASSWORD = "password"
# Structure payload.
payload = {
'source': 'universal',
'url': "https://www.bestbuy.com/site/samsung-galaxy-z-flip4-128gb-unlocked-graphite/6512618.p?skuId=6512618&intl=nosplash",
'geo_location': 'United States',
'parse': True,
}
# Get response.
response = requests.request(
'POST',
'https://realtime.oxylabs.io/v1/queries',
auth=(USERNAME, PASSWORD),
json=payload,
)
print(response.json())
Create a function that would read the historical price tracker data.
def read_past_data(filepath):
results = {}
if not os.path.isfile(filepath):
open(filepath, 'a').close()
if not os.stat(filepath).st_size == 0:
results_df = pd.read_json(filepath, convert_axes=False)
results = results_df.to_dict()
return results
return results
As the historical price data is now loaded, think of a function that would take the past price tracker data and add the present price to it.
def add_todays_prices(results, tracked_product_links):
today = date.today()
for link in tracked_product_links:
product = get_product(link)
if product["title"] not in results:
results[product["title"]] = {}
results[product["title"]][today.strftime("%d %B, %Y")] = {
"price": product["price"],
"currency": product["currency"],
}
return results
Having the prices updated for the present, move on to saving the results back to the file you started from, thus finishing the process loop.
def save_results(results, filepath):
df = pd.DataFrame.from_dict(results)
df.to_json(filepath)
return
Finally, move the connection to the Scraper API to a separate function and combine all you have so far.
import os
import requests
import os.path
from datetime import date
import pandas as pd
def get_product(link):
USERNAME = "username"
PASSWORD = "password"
# Structure payload.
payload = {
'source': 'universal',
'url': link,
'geo_location': 'United States',
'parse': True,
}
# Get response.
response = requests.request(
'POST',
'https://realtime.oxylabs.io/v1/queries',
auth=(USERNAME, PASSWORD),
json=payload,
)
response_json = response.json()
content = response_json["results"][0]["content"]
product = {
"title": content["title"],
"price": content["price"]["price"],
"currency": content["price"]["currency"]
}
return product
def read_past_data(filepath):
results = {}
if not os.path.isfile(filepath):
open(filepath, 'a').close()
if not os.stat(filepath).st_size == 0:
results_df = pd.read_json(filepath, convert_axes=False)
results = results_df.to_dict()
return results
return results
def save_results(results, filepath):
df = pd.DataFrame.from_dict(results)
df.to_json(filepath)
return
def add_todays_prices(results, tracked_product_links):
today = date.today()
for link in tracked_product_links:
product = get_product(link)
if product["title"] not in results:
results[product["title"]] = {}
results[product["title"]][today.strftime("%d %B, %Y")] = {
"price": product["price"],
"currency": product["currency"],
}
return results
def main():
results_file = "data.json"
tracked_product_links = [
"https://www.bestbuy.com/site/samsung-galaxy-z-flip4-128gb-unlocked-graphite/6512618.p?skuId=6512618&intl=nosplash",
"https://www.bestbuy.com/site/samsung-galaxy-z-flip5-256gb-unlocked-graphite/6548838.p?skuId=6548838"
]
past_results = read_past_data(results_file)
updated_results = add_todays_prices(past_results, tracked_product_links)
save_results(updated_results, results_file)
if __name__ == "__main__":
main()
def plot_history_chart(results):
for product in results:
dates = []
prices = []
for entry_date in results[product]:
dates.append(entry_date)
prices.append(results[product][entry_date]["price"])
plt.plot(dates,prices, label=product)
plt.xlabel("Date")
plt.ylabel("Price")
plt.title("Product prices over time")
plt.legend()
plt.show()
def check_for_pricedrop(results):
for product in results:
today = date.today()
yesterday = today - timedelta(days = 1)
change = results[product][today.strftime("%d %B, %Y")]["price"] - results[product][yesterday.strftime("%d %B, %Y")]["price"]
if change < 0:
print(f'Price for {product} has dropped by {change}!')
import os
import requests
import os.path
from datetime import date
from datetime import timedelta
import pandas as pd
import matplotlib.pyplot as plt
def get_product(link):
USERNAME = "username"
PASSWORD = "password"
# Structure payload.
payload = {
'source': 'universal',
'url': link,
'geo_location': 'United States',
'parse': True,
}
# Get response.
response = requests.request(
'POST',
'https://realtime.oxylabs.io/v1/queries',
auth=(USERNAME, PASSWORD),
json=payload,
)
response_json = response.json()
content = response_json["results"][0]["content"]
product = {
"title": content["title"],
"price": content["price"]["price"],
"currency": content["price"]["currency"]
}
return product
def read_past_data(filepath):
results = {}
if not os.path.isfile(filepath):
open(filepath, 'a').close()
if not os.stat(filepath).st_size == 0:
results_df = pd.read_json(filepath, convert_axes=False)
results = results_df.to_dict()
return results
return results
def save_results(results, filepath):
df = pd.DataFrame.from_dict(results)
df.to_json(filepath)
return
def add_todays_prices(results, tracked_product_links):
today = date.today()
for link in tracked_product_links:
product = get_product(link)
if product["title"] not in results:
results[product["title"]] = {}
results[product["title"]][today.strftime("%d %B, %Y")] = {
"price": product["price"],
"currency": product["currency"],
}
return results
def plot_history_chart(results):
for product in results:
dates = []
prices = []
for entry_date in results[product]:
dates.append(entry_date)
prices.append(results[product][entry_date]["price"])
plt.plot(dates,prices, label=product)
plt.xlabel("Date")
plt.ylabel("Price")
plt.title("Product prices over time")
plt.legend()
plt.show()
def check_for_pricedrop(results):
for product in results:
today = date.today()
yesterday = today - timedelta(days = 1)
change = results[product][today.strftime("%d %B, %Y")]["price"] - results[product][yesterday.strftime("%d %B, %Y")]["price"]
if change < 0:
print(f'Price for {product} has dropped by {change}!')
def main():
results_file = "data.json"
tracked_product_links = [
"https://www.bestbuy.com/site/samsung-galaxy-z-flip4-128gb-unlocked-graphite/6512618.p?skuId=6512618&intl=nosplash",
"https://www.bestbuy.com/site/samsung-galaxy-z-flip5-256gb-unlocked-graphite/6548838.p?skuId=6548838"
]
past_results = read_past_data(results_file)
updated_results = add_todays_prices(past_results, tracked_product_links)
plot_history_chart(updated_results)
check_for_pricedrop(updated_results)
save_results(updated_results, results_file)
if __name__ == "__main__":
main()
For all of the API parameters, see our documentation.
If you need assistance, don't hesitate to contact us at support@oxylabs.io.