Skip to content

palucdev/TwitterSentimentAnalysis

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

49 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Twitter Sentiment Analysis

An example use of sentiment analysis applied to the latest Tweets. Application uses LSTM with Attention layer to draw between positive and negative feeback from a given Tweet. Also, it can show which words were most impactful during analysis based on internal attention values.

Screenshots

Example search results for "hate"

Hate Results

Example search results for "love"

Love Results

Tweets sentiment coloring

Custom Tweet analysis

How to run web-app?

$ cd ./web-app
$ npm install
$ npm start

Need more info about web-app project? Check out general project info.

How to train the model?

To train your model, please follow below commands:

$ cd ./training
$ virtualenv -p python3.6 venv
$ . venv/bin/activate
(venv) $ pip install pandas keras tensorflow sklearn nltk swifter
(venv) $ cd ./dataset && wget http://cs.stanford.edu/people/alecmgo/trainingandtestdata.zip
(venv) $ unzip trainingandtestdata.zip
(venv) $ cd ..
(venv) $ export NLTK_DATA=./nltk/
(venv) $ python prepare_dataset.py
(venv) $ python train.py

How to run the API?

At first copy your model from above training together with tokenizer.pickle to the ./api/model_data directory. Remember to change the name of you model to weights.h5! Folder should look like this:

$ ls ./api/model_data/
-rw-r--r--  1 owner  owner   5.9K Jan 18 00:09 tokenizer.pickle
-rw-r--r--  1 owner  owner    13M Jan 18 00:10 weights.h5

NOTE: This repository already contains pretrained model weights and tokenizer, so feel free to use it!

To run the API, use below series of commands:

$ cd ./api
$ virtualenv -p python3.6 venv
$ . venv/bin/activate
(venv) $ pip install tweepy flask-restplus flask-cors keras tensorflow nltk
(venv) $ export CONSUMER_KEY={YOUR_CONSUMER_KEY}
(venv) $ export CONSUMER_SECRET={YOUT_CONSUMER_SECRET}
(venv) $ export ACCESS_TOKEN={YOUR_ACCESS_TOKEN}
(venv) $ export ACCESS_TOKEN_SECRET={YOUR_ACCESS_TOKEN_SECRET}
(venv) $ export NLTK_DATA=./nltk/
(venv) $ python main.py

Open your browser and visit Swagger page under http://127.0.0.1:5000.

Example API calls

Here you can find some example endpoints that we've prepared:

Get Trendings for given country

NOTE: Only UK and USA are supported for now!

GET -> http://127.0.0.1:5000/trending/UK

[
  {
    "name": "Soulja Boy",
    "query": "%22Soulja+Boy%22",
    "volume": 112724
  },
  {
    "name": "Bielsa",
    "query": "Bielsa",
    "volume": 79883
  },
  {
    "name": "Marcelo",
    "query": "Marcelo",
    "volume": 60846
  },
  {
    "name": "#JuveMilan",
    "query": "%23JuveMilan",
    "volume": 34641
  }
]

Get Tweets with sentiment analysis

GET -> http://127.0.0.1:5000/tweets?query=hate&size=3

[
  {
    "text": "i hate people",
    "sentiment": "NEGATIVE",
    "attention": [
      0.06718742102384567,
      0.4514390826225281,
      0.4514661729335785
    ],
    "fullname": "jen",
    "nickname": "iamabandito",
    "created": "2019-01-22T20:32:39",
    "photo_url": "http://pbs.twimg.com/profile_images/1086319779382743040/MhRt4ims_normal.jpg"
  },
  {
    "text": "I hate that being a “morning person” is seen as being the most productive. I work better at night, I work better when I’ve slept in, I enjoy leisure mornings. I am not a morning person period.",
    "sentiment": "NEUTRAL",
    "attention": [
      0.03465234488248825,
      0.2328326255083084,
      0.23284660279750824,
      0.229080468416214,
      0.20134896039962769,
      0.1602855920791626,
      0.1254456341266632,
      0.1011728048324585,
      0.11189230531454086,
      0.16113440692424774,
      0.09171538800001144,
      0.08485584706068039,
      0.0928933247923851,
      0.1442396193742752,
      0.21461866796016693,
      0.23283472657203674,
      0.11889468878507614,
      0.17596875131130219,
      0.17660245299339294,
      0.19103240966796875,
      0.23278631269931793,
      0.04326930269598961,
      0.15518422424793243,
      0.2036893367767334,
      0.04577045887708664,
      0.05624167248606682,
      0.07582158595323563,
      0.2034529596567154,
      0.06726902723312378,
      0.23272675275802612,
      0.14504748582839966,
      0.19384515285491943,
      0.17640644311904907,
      0.1585114300251007,
      0.23276740312576294,
      0.041838016360998154,
      0.06722453981637955
    ],
    "fullname": "c",
    "nickname": "cxxlvndivvxx",
    "created": "2019-01-22T20:36:31",
    "photo_url": "http://pbs.twimg.com/profile_images/1074561986774544384/o3qw24Ve_normal.jpg"
  },
  {
    "text": "I love your voice but I hate when you speak",
    "sentiment": "POSITIVE",
    "attention": [
      0.05682794377207756,
      0.38138285279273987,
      0.25030916929244995,
      0.05787074193358421,
      0.05518733337521553,
      0.08842664957046509,
      0.3818563222885132,
      0.38185766339302063,
      0.38039451837539673,
      0.3818225860595703
    ],
    "fullname": "𝐤𝐠 ¡𝐭𝐨𝐦𝐨𝐫𝐫𝐨𝐰!",
    "nickname": "theblcony",
    "created": "2019-01-22T20:36:30",
    "photo_url": "http://pbs.twimg.com/profile_images/1086472744513011712/u44lGkLA_normal.jpg"
  }
]

Get Tweets with sentiment analysis

GET -> http://127.0.0.1:5000/custom_tweet?content=I%20love%20trains%20and%20potatoes!

[
  {
    "text": "I love trains and potatoes!",
    "sentiment": "POSITIVE",
    "attention": [
      0.06628784537315369,
      0.4448699355125427,
      0.4144006073474884,
      0.15626297891139984,
      0.1030135452747345
    ]
  }
]

About

Sentiment Analysis applied to the latest Tweets

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published