Skip to content

Train an RBM to infer Bars-As-Stripes patterns and other dummy examples

Notifications You must be signed in to change notification settings

patricieni/Restricted-Boltzmann-Machines

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 

Repository files navigation

Restricted-Boltzmann-Machines

Train an RBM to infer Bars-As-Stripes patterns and other dummy examples.

A few ideas that I used were taken from here, like how to iniatialize the weights as a function of the hidden/visible units. Biases were initialized to zero although there are better ways (see the guide) https://www.cs.toronto.edu/~hinton/absps/guideTR.pdf

I also used the below tutorial on RBM's. http://www.sciencedirect.com/science/article/pii/S0031320313002495

The contrastive divergence algorithm for learning the weights was done with k = 1 although you can change that. I used stochastic batch gradient descent where you shuffle the data at each iteration and plotted the error as you learn. After 3000 cycles you learn very little, after 4000 you don't really learn.

Bars-as-stripes: You have 30 matrices (4x4) (reshape them as vectors) that can either have horizontal lines or vertical lines(whenever a line is present you have a row/column of ones).

Once your RBM has learned the weights, the idea is to reconstruct a partial input by sampling from the joint distribution over the hidden and visible units.

TODO: Add more information on RBM theory and the proofs TODO: Refactor the huge for loops into matrix operations.

About

Train an RBM to infer Bars-As-Stripes patterns and other dummy examples

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages