![Gitter](https://badges.gitter.im/Join Chat.svg)
C implementation of Python 3 lru_cache for Python 2.6, 2.7, 3.2, 3.3, 3.4
Passes all tests in the standard library for functools.lru_cache.
Obeys same API as Python 3.3/3.4 functools.lru_cache with 2 enhancements:
- An additional argument
state
may be supplied which must be alist
ordict
. This allows one to safely cache functions for which the result depends on some context which is not a part of the function call signature. - An additional argument
unhashable
may be supplied to control how the cached function responds to unhashable arguments. The options are:
- "error" (default) - Raise a
TypeError
- "warning" - Raise a
UserWarning
and call the wrapped function with the supplied arguments. - "ignore" - Just call the wrapped function with the supplied arguments.
As of Python 3.5, the CPython interpreter implements functools.lru_cache
in C. It is generally faster than this library
due to its use of a more performant internal API for dictionaries (and perhaps other reasons). Therefore this library
is only recommended for Python 2.6-3.4
Via pip:
pip install fastcache
Manually :
git clone https://github.com/pbrady/fastcache.git
cd fastcache
python setup.py install
Via conda :
- build latest and greatest github version
git clone https://github.com/pbrady/fastcache.git
conda-build fastcache
conda install --use-local fastcache
- build latest released version on pypi
git clone https://github.com/conda/conda-recipes.git
conda-build conda-recipes/fastcache
conda install --use-local fastcache
>>> import fastcache
>>> fastcache.test()
Tests include the official suite of tests from Python standard library for functools.lru_cache
>>> from fastcache import clru_cache, __version__
>>> __version__
'0.3.3'
>>> @clru_cache(maxsize=325, typed=False)
... def fib(n):
... """Terrible Fibonacci number generator."""
... return n if n < 2 else fib(n-1) + fib(n-2)
...
>>> fib(300)
222232244629420445529739893461909967206666939096499764990979600
>>> fib.cache_info()
CacheInfo(hits=298, misses=301, maxsize=325, currsize=301)
>>> print(fib.__doc__)
Terrible Fibonacci number generator.
>>> fib.cache_clear()
>>> fib.cache_info()
CacheInfo(hits=0, misses=0, maxsize=325, currsize=0)
>>> fib.__wrapped__(300)
222232244629420445529739893461909967206666939096499764990979600
The speed up vs lru_cache
provided by functools
in 3.3 or 3.4 is 10x-30x depending on the function signature and whether one is comparing with 3.3 or 3.4. A sample run of the benchmarking suite for 3.3 is
>>> import sys
>>> sys.version_info
sys.version_info(major=3, minor=3, micro=5, releaselevel='final', serial=0)
>>> from fastcache import benchmark
>>> benchmark.run()
Test Suite 1 :
Primarily tests cost of function call, hashing and cache hits.
Benchmark script based on
http://bugs.python.org/file28400/lru_cache_bench.py
function call speed up
untyped(i) 11.31, typed(i) 31.20
untyped("spam", i) 16.71, typed("spam", i) 27.50
untyped("spam", "spam", i) 14.24, typed("spam", "spam", i) 22.62
untyped(a=i) 13.25, typed(a=i) 23.92
untyped(a="spam", b=i) 10.51, typed(a="spam", b=i) 18.58
untyped(a="spam", b="spam", c=i) 9.34, typed(a="spam", b="spam", c=i) 16.40
min mean max
untyped 9.337 12.559 16.706
typed 16.398 23.368 31.197
Test Suite 2 :
Tests millions of misses and millions of hits to quantify
cache behavior when cache is full.
function call speed up
untyped(i, j, a="spammy") 8.94, typed(i, j, a="spammy") 14.09
A sample run of the benchmarking suite for 3.4 is
>>> import sys
>>> sys.version_info
sys.version_info(major=3, minor=4, micro=1, releaselevel='final', serial=0)
>>> from fastcache import benchmark
>>> benchmark.run()
Test Suite 1 :
Primarily tests cost of function call, hashing and cache hits.
Benchmark script based on
http://bugs.python.org/file28400/lru_cache_bench.py
function call speed up
untyped(i) 9.74, typed(i) 23.31
untyped("spam", i) 15.21, typed("spam", i) 20.82
untyped("spam", "spam", i) 13.35, typed("spam", "spam", i) 17.43
untyped(a=i) 12.27, typed(a=i) 19.04
untyped(a="spam", b=i) 9.81, typed(a="spam", b=i) 14.25
untyped(a="spam", b="spam", c=i) 7.77, typed(a="spam", b="spam", c=i) 11.61
min mean max
untyped 7.770 11.359 15.210
typed 11.608 17.743 23.311
Test Suite 2 :
Tests millions of misses and millions of hits to quantify
cache behavior when cache is full.
function call speed up
untyped(i, j, a="spammy") 8.27, typed(i, j, a="spammy") 11.18