This project was created to train a single classification model.
python helper/train.py +configs=<CONFIG>
$git clone https://github.com/pedrodiamel/pytorchvision.git
$cd pytorchvision
$python setup.py install
We now support Visdom for real-time loss visualization during training!
To use Visdom in the browser:
# First install Python server and client
pip install visdom
# Start the server (probably in a screen or tmux)
python -m visdom.server -env_path out/runs/visdom/ -port 6006
# http://localhost:6006/
For jupyter notebook
jupyter notebook --port 8080 --allow-root --ip 0.0.0.0 --no-browser
docker build -f "Dockerfile" -t torchcls:latest .
docker run -ti --privileged --ipc=host --name torchcls-dev -p 8080:8080 -p 6006:6006 -v $DATASETS:/.datasets torchcls:latest /bin/bash
docker-compose up --build -d
docker-compose down
docker exec -it torchcls-dev /bin/bash
Model | CIFAR10 | CIFAR100 | FERp | Affect |
---|---|---|---|---|
PreActResNet18 | 95.36% | 77.02% | 87.25 | 43.0 |
PreActResNet34 | 95.72% | 78.83% |
Model | Ferp(test) | AffectNet(val) | Ckp | Jaffe | BU3DFE | Models |
---|---|---|---|---|---|---|
PreActResNet18 | 82.372 | 26,100 | 55,307 | 36,318 | 39,828 | |
FMPNet | 79,535 | 29,200 | 65,363 | 46,766 | 41,379 | |
CVGG | 84,316 | 31,150 | 66,201 | 46,269 | 42,069 | |
ResNet18 | 87,695 | 34,400 | 71,508 | 50,746 | 45,345 | |
AlexNet | 86,038 | 35,075 | 70,670 | 64,401 | 46,379 | |
DeXpression | 79,694 | 31,875 | 51,117 | 44,279 | 37,241 |