Skip to content

Commit

Permalink
Added configs for rancrop models trained with wce loss
Browse files Browse the repository at this point in the history
  • Loading branch information
peiva-git committed Dec 14, 2023
1 parent 2c468f9 commit feb96d4
Show file tree
Hide file tree
Showing 9 changed files with 292 additions and 4 deletions.
8 changes: 4 additions & 4 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -111,10 +111,10 @@ In the following table you can find the summarized results of the obtained model
| Model | Backbone | Random Crops | Train Resolution | Test Resolution | Training Iters | Ball class IoU | Ball class Precision | Ball class Recall | Kappa | Dice | Links |
|--------------|----------|--------------|-------------------|------------------|----------------|----------------|----------------------|-------------------|--------|--------|----------------------------------------------------------------|
| PP-LiteSeg-T | STDC1 | 0 | 1024x512 | 2048x1024 | 50000 | 0.6542 | 0.909 | 0.7 | 0.7909 | 0.8954 | [config](configs/pp_liteseg_base_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 1 | 1024x512 | 2048x1024 | 50000 | 0.5561 | 0.9035 | 0.5913 | 0.7147 | 0.8574 | [config](configs/pp_liteseg_rancrop1_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 2 | 1024x512 | 2048x1024 | 50000 | 0.5459 | 0.8999 | 0.5811 | 0.7062 | 0.8531 | [config](configs/pp_liteseg_rancrop2_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 5 | 1024x512 | 2048x1024 | 50000 | 0.5627 | 0.9053 | 0.5979 | 0.7201 | 0.8600 | [config](configs/pp_liteseg_rancrop5_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 10 | 1024x512 | 2048x1024 | 50000 | 0.5539 | 0.9042 | 0.5884 | 0.7128 | 0.8564 | [config](configs/pp_liteseg_rancrop10_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 1 | 1024x512 | 2048x1024 | 50000 | 0.5561 | 0.9035 | 0.5913 | 0.7147 | 0.8574 | [config](configs/rancrop_ohem_10000/pp_liteseg_rancrop1_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 2 | 1024x512 | 2048x1024 | 50000 | 0.5459 | 0.8999 | 0.5811 | 0.7062 | 0.8531 | [config](configs/rancrop_ohem_10000/pp_liteseg_rancrop2_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 5 | 1024x512 | 2048x1024 | 50000 | 0.5627 | 0.9053 | 0.5979 | 0.7201 | 0.8600 | [config](configs/rancrop_ohem_10000/pp_liteseg_rancrop5_stdc1_ohem_1024x512.yml) |
| PP-LiteSeg-T | STDC1 | 10 | 1024x512 | 2048x1024 | 50000 | 0.5539 | 0.9042 | 0.5884 | 0.7128 | 0.8564 | [config](configs/rancrop_ohem_10000/pp_liteseg_rancrop10_stdc1_ohem_1024x512.yml) |

## Credits

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
batch_size: 4
iters: 50000 # ~ 200 epochs for 1002 training images

train_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
train_path: /home/ubuntu/dataset_paddleseg/train.txt
num_classes: 2
mode: train
transforms:
- type: Resize
target_size: [1024, 512]
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.5
contrast_range: 0.5
saturation_range: 0.5
- type: Normalize

val_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
val_path: /home/ubuntu/dataset_paddleseg/val.txt
num_classes: 2
mode: val
transforms:
- type: Resize
target_size: [2048, 1024]
- type: Normalize

test_config:
aug_eval: True
scales: 1.0

loss:
types:
- type: CrossEntropyLoss
weight: [0.01, 0.99] # the ball pixels represent ~ 0.004 of the pixels on a 1024x512 image
- type: CrossEntropyLoss
weight: [0.01, 0.99]
- type: CrossEntropyLoss
weight: [0.01, 0.99]
coef: [1, 1, 1]

optimizer:
type: SGD
momentum: 0.9
weight_decay: 5.0e-4

lr_scheduler:
type: PolynomialDecay
warmup_iters: 1000
warmup_start_lr: 1.0e-5
learning_rate: 0.005
end_lr: 0
power: 0.9

model:
type: PPLiteSegRandomCrops
num_classes: 2
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
arm_out_chs: [32, 64, 128]
seg_head_inter_chs: [32, 64, 128]
random_crops: 10
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
batch_size: 4
iters: 50000 # ~ 200 epochs for 1002 training images

train_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
train_path: /home/ubuntu/dataset_paddleseg/train.txt
num_classes: 2
mode: train
transforms:
- type: Resize
target_size: [1024, 512]
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.5
contrast_range: 0.5
saturation_range: 0.5
- type: Normalize

val_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
val_path: /home/ubuntu/dataset_paddleseg/val.txt
num_classes: 2
mode: val
transforms:
- type: Resize
target_size: [2048, 1024]
- type: Normalize

test_config:
aug_eval: True
scales: 1.0

loss:
types:
- type: CrossEntropyLoss
weight: [0.01, 0.99] # the ball pixels represent ~ 0.004 of the pixels on a 1024x512 image
- type: CrossEntropyLoss
weight: [0.01, 0.99]
- type: CrossEntropyLoss
weight: [0.01, 0.99]
coef: [1, 1, 1]

optimizer:
type: SGD
momentum: 0.9
weight_decay: 5.0e-4

lr_scheduler:
type: PolynomialDecay
warmup_iters: 1000
warmup_start_lr: 1.0e-5
learning_rate: 0.005
end_lr: 0
power: 0.9

model:
type: PPLiteSegRandomCrops
num_classes: 2
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
arm_out_chs: [32, 64, 128]
seg_head_inter_chs: [32, 64, 128]
random_crops: 1
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
batch_size: 4
iters: 50000 # ~ 200 epochs for 1002 training images

train_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
train_path: /home/ubuntu/dataset_paddleseg/train.txt
num_classes: 2
mode: train
transforms:
- type: Resize
target_size: [1024, 512]
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.5
contrast_range: 0.5
saturation_range: 0.5
- type: Normalize

val_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
val_path: /home/ubuntu/dataset_paddleseg/val.txt
num_classes: 2
mode: val
transforms:
- type: Resize
target_size: [2048, 1024]
- type: Normalize

test_config:
aug_eval: True
scales: 1.0

loss:
types:
- type: CrossEntropyLoss
weight: [0.01, 0.99] # the ball pixels represent ~ 0.004 of the pixels on a 1024x512 image
- type: CrossEntropyLoss
weight: [0.01, 0.99]
- type: CrossEntropyLoss
weight: [0.01, 0.99]
coef: [1, 1, 1]

optimizer:
type: SGD
momentum: 0.9
weight_decay: 5.0e-4

lr_scheduler:
type: PolynomialDecay
warmup_iters: 1000
warmup_start_lr: 1.0e-5
learning_rate: 0.005
end_lr: 0
power: 0.9

model:
type: PPLiteSegRandomCrops
num_classes: 2
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
arm_out_chs: [32, 64, 128]
seg_head_inter_chs: [32, 64, 128]
random_crops: 2
Original file line number Diff line number Diff line change
@@ -0,0 +1,72 @@
batch_size: 4
iters: 50000 # ~ 200 epochs for 1002 training images

train_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
train_path: /home/ubuntu/dataset_paddleseg/train.txt
num_classes: 2
mode: train
transforms:
- type: Resize
target_size: [1024, 512]
- type: ResizeStepScaling
min_scale_factor: 0.5
max_scale_factor: 2.0
scale_step_size: 0.25
- type: RandomPaddingCrop
crop_size: [1024, 512]
- type: RandomHorizontalFlip
- type: RandomDistort
brightness_range: 0.5
contrast_range: 0.5
saturation_range: 0.5
- type: Normalize

val_dataset:
type: Dataset
dataset_root: /home/ubuntu/dataset_paddleseg/
val_path: /home/ubuntu/dataset_paddleseg/val.txt
num_classes: 2
mode: val
transforms:
- type: Resize
target_size: [2048, 1024]
- type: Normalize

test_config:
aug_eval: True
scales: 1.0

loss:
types:
- type: CrossEntropyLoss
weight: [0.01, 0.99] # the ball pixels represent ~ 0.004 of the pixels on a 1024x512 image
- type: CrossEntropyLoss
weight: [0.01, 0.99]
- type: CrossEntropyLoss
weight: [0.01, 0.99]
coef: [1, 1, 1]

optimizer:
type: SGD
momentum: 0.9
weight_decay: 5.0e-4

lr_scheduler:
type: PolynomialDecay
warmup_iters: 1000
warmup_start_lr: 1.0e-5
learning_rate: 0.005
end_lr: 0
power: 0.9

model:
type: PPLiteSegRandomCrops
num_classes: 2
backbone:
type: STDC1
pretrained: https://bj.bcebos.com/paddleseg/dygraph/PP_STDCNet1.tar.gz
arm_out_chs: [32, 64, 128]
seg_head_inter_chs: [32, 64, 128]
random_crops: 5

0 comments on commit feb96d4

Please sign in to comment.