Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add ADAM optimizer #57

Merged
merged 4 commits into from
Dec 8, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
83 changes: 83 additions & 0 deletions non-linear-solver-spec.json
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@
"LBFGS",
"LBFGSB",
"Newton",
"ADAM",
"StochasticADAM",
"StochasticGradientDescent",
"box_constraints",
"advanced"
Expand All @@ -29,6 +31,8 @@
"Newton",
"DenseNewton",
"GradientDescent",
"ADAM",
"StochasticADAM",
"StochasticGradientDescent",
"L-BFGS",
"BFGS",
Expand Down Expand Up @@ -166,6 +170,85 @@
"type": "bool",
"doc": "Use PSD as fallback using second order solvers (i.e., Newton's method)."
},
{
"pointer": "/ADAM",
"default": null,
"type": "object",
"optional": [
"alpha",
"beta_1",
"beta_2",
"epsilon"
],
"doc": "Options for ADAM."
},
{
"pointer": "/ADAM/alpha",
"default": 0.001,
"type": "float",
"doc": "Parameter alpha for ADAM."
},
{
"pointer": "/ADAM/beta_1",
"default": 0.9,
"type": "float",
"doc": "Parameter beta_1 for ADAM."
},
{
"pointer": "/ADAM/beta_2",
"default": 0.999,
"type": "float",
"doc": "Parameter beta_2 for ADAM."
},
{
"pointer": "/ADAM/epsilon",
"default": 1e-8,
"type": "float",
"doc": "Parameter epsilon for ADAM."
},
{
"pointer": "/StochasticADAM",
"default": null,
"type": "object",
"optional": [
"alpha",
"beta_1",
"beta_2",
"epsilon",
"erase_component_probability"
],
"doc": "Options for ADAM."
},
{
"pointer": "/StochasticADAM/alpha",
"default": 0.001,
"type": "float",
"doc": "Parameter alpha for ADAM."
},
{
"pointer": "/StochasticADAM/beta_1",
"default": 0.9,
"type": "float",
"doc": "Parameter beta_1 for ADAM."
},
{
"pointer": "/StochasticADAM/beta_2",
"default": 0.999,
"type": "float",
"doc": "Parameter beta_2 for ADAM."
},
{
"pointer": "/StochasticADAM/epsilon",
"default": 1e-8,
"type": "float",
"doc": "Parameter epsilon for ADAM."
},
{
"pointer": "/StochasticADAM/erase_component_probability",
"default": 0.3,
"type": "float",
"doc": "Probability of erasing a component on the gradient for ADAM."
},
{
"pointer": "/StochasticGradientDescent",
"default": null,
Expand Down
14 changes: 14 additions & 0 deletions src/polysolve/nonlinear/Solver.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@

#include "descent_strategies/BFGS.hpp"
#include "descent_strategies/Newton.hpp"
#include "descent_strategies/ADAM.hpp"
#include "descent_strategies/GradientDescent.hpp"
#include "descent_strategies/LBFGS.hpp"

Expand Down Expand Up @@ -85,6 +86,17 @@ namespace polysolve::nonlinear
solver->add_strategy(std::make_unique<LBFGS>(
solver_params, characteristic_length, logger));
}
else if (solver_name == "ADAM" || solver_name == "adam")
{
solver->add_strategy(std::make_unique<ADAM>(
solver_params, false, characteristic_length, logger));
}
else if (solver_name == "StochasticADAM" || solver_name == "stochastic_adam")
{
solver->add_strategy(std::make_unique<ADAM>(
solver_params, true, characteristic_length, logger));
}

else if (solver_name == "StochasticGradientDescent" || solver_name == "stochastic_gradient_descent")
{
solver->add_strategy(std::make_unique<GradientDescent>(
Expand All @@ -109,6 +121,8 @@ namespace polysolve::nonlinear
return {"BFGS",
"DenseNewton",
"Newton",
"ADAM",
"StochasticADAM",
"GradientDescent",
"StochasticGradientDescent",
"L-BFGS"};
Expand Down
67 changes: 67 additions & 0 deletions src/polysolve/nonlinear/descent_strategies/ADAM.cpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,67 @@
// ADAM from "ADAM: A METHOD FOR STOCHASTIC OPTIMIZATION"

#include "ADAM.hpp"

namespace polysolve::nonlinear
{

ADAM::ADAM(const json &solver_params,
const bool is_stochastic,
const double characteristic_length,
spdlog::logger &logger)
: Superclass(solver_params, characteristic_length, logger), is_stochastic_(is_stochastic)
{
std::string param_name = is_stochastic ? "StochasticADAM" : "ADAM";
alpha_ = solver_params[param_name]["alpha"];
beta_1_ = solver_params[param_name]["beta_1"];
beta_2_ = solver_params[param_name]["beta_2"];
epsilon_ = solver_params[param_name]["epsilon"];
if (is_stochastic)
erase_component_probability_ = solver_params["StochasticADAM"]["erase_component_probability"];
}

void ADAM::reset(const int ndof)
{
Superclass::reset(ndof);
m_prev_ = Eigen::VectorXd::Zero(ndof);
v_prev_ = Eigen::VectorXd::Zero(ndof);
t_ = 0;
}

bool ADAM::compute_update_direction(
Problem &objFunc,
const TVector &x,
const TVector &grad,
TVector &direction)
{
if (m_prev_.size() == 0)
m_prev_ = Eigen::VectorXd::Zero(x.size());

Check warning on line 38 in src/polysolve/nonlinear/descent_strategies/ADAM.cpp

View check run for this annotation

Codecov / codecov/patch

src/polysolve/nonlinear/descent_strategies/ADAM.cpp#L38

Added line #L38 was not covered by tests
if (v_prev_.size() == 0)
v_prev_ = Eigen::VectorXd::Zero(x.size());

Check warning on line 40 in src/polysolve/nonlinear/descent_strategies/ADAM.cpp

View check run for this annotation

Codecov / codecov/patch

src/polysolve/nonlinear/descent_strategies/ADAM.cpp#L40

Added line #L40 was not covered by tests

TVector grad_modified = grad;

if (is_stochastic_)
{
Eigen::VectorXd mask = (Eigen::VectorXd::Random(direction.size()).array() + 1.) / 2.;
for (int i = 0; i < direction.size(); ++i)
grad_modified(i) *= (mask(i) < erase_component_probability_) ? 0. : 1.;
}

TVector m = (beta_1_ * m_prev_) + ((1 - beta_1_) * grad_modified);
TVector v = beta_2_ * v_prev_;
for (int i = 0; i < v.size(); ++i)
v(i) += (1 - beta_2_) * grad_modified(i) * grad_modified(i);

m = m.array() / (1 - pow(beta_1_, t_));
v = v.array() / (1 - pow(beta_2_, t_));

direction = -alpha_ * m;
for (int i = 0; i < v.size(); ++i)
direction(i) /= sqrt(v(i) + epsilon_);

++t_;

return true;
}
} // namespace polysolve::nonlinear
45 changes: 45 additions & 0 deletions src/polysolve/nonlinear/descent_strategies/ADAM.hpp
Original file line number Diff line number Diff line change
@@ -0,0 +1,45 @@
#pragma once

#include "DescentStrategy.hpp"
#include <polysolve/Utils.hpp>

#include <polysolve/linear/Solver.hpp>

namespace polysolve::nonlinear
{
class ADAM : public DescentStrategy
{
public:
using Superclass = DescentStrategy;

ADAM(const json &solver_params,
const bool is_stochastic,
const double characteristic_length,
spdlog::logger &logger);

std::string name() const override { return is_stochastic_ ? "StochasticADAM" : "ADAM"; }

void reset(const int ndof) override;

virtual bool compute_update_direction(
Problem &objFunc,
const TVector &x,
const TVector &grad,
TVector &direction) override;

bool is_direction_descent() override { return false; }

private:
TVector m_prev_;
TVector v_prev_;

double beta_1_, beta_2_;
double alpha_;

int t_ = 0;
double epsilon_;

bool is_stochastic_;
double erase_component_probability_ = 0;
};
} // namespace polysolve::nonlinear
2 changes: 2 additions & 0 deletions src/polysolve/nonlinear/descent_strategies/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,8 @@ set(SOURCES
BFGS.hpp
GradientDescent.cpp
GradientDescent.hpp
ADAM.cpp
ADAM.hpp
Newton.hpp
Newton.cpp
)
Expand Down
Loading