-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[SpatialPartitioning] Add test for KdTree datastructure
Aim at detecting problems with - the structure KdTreeDefaultTraits (copies, references, ...) - duplicated samples
- Loading branch information
Showing
3 changed files
with
185 additions
and
20 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,152 @@ | ||
/* | ||
This Source Code Form is subject to the terms of the Mozilla Public | ||
License, v. 2.0. If a copy of the MPL was not distributed with this | ||
file, You can obtain one at http://mozilla.org/MPL/2.0/. | ||
\file Test general properties of the KdTree | ||
*/ | ||
|
||
#include "../common/testing.h" | ||
#include "../common/testUtils.h" | ||
#include "../common/has_duplicate.h" | ||
#include "../common/kdtree_utils.h" | ||
|
||
#include <Ponca/src/SpatialPartitioning/KdTree/kdTree.h> | ||
#include <Ponca/src/SpatialPartitioning/KdTree/kdTreeTraits.h> | ||
|
||
using namespace Ponca; | ||
|
||
|
||
template<typename DataPoint> | ||
void testKdtreeWithDuplicate() | ||
{ | ||
using Scalar = typename DataPoint::Scalar; | ||
using VectorContainer = typename KdTreeSparse<DataPoint>::PointContainer; | ||
using VectorType = typename DataPoint::VectorType; | ||
|
||
// Number of point samples in each KdTree leaf | ||
#ifdef PONCA_DEBUG | ||
const int cellSize = 6; | ||
const int nbCells = 2; | ||
const int N = nbCells*cellSize; | ||
#else | ||
const int cellSize = 64; | ||
const int nbCells = 100; | ||
const int N = nbCells*cellSize; | ||
#endif | ||
|
||
const Scalar r = 0.001; | ||
|
||
auto test_tree = [r] (const auto& points, const auto&indices, const int cellSize) -> void | ||
{ | ||
KdTreeSparse<DataPoint> tree(points, indices, cellSize); | ||
|
||
#ifndef PONCA_DEBUG | ||
#pragma omp parallel for default(none) shared(tree, points, indices, g_test_stack, r) | ||
#endif | ||
for (int i = 0; i < points.size(); ++i) | ||
{ | ||
VectorType point = points[i].pos();//VectorType::Random(); // values between [-1:1] | ||
std::vector<int> results; | ||
|
||
for (int j : tree.range_neighbors(point, r)) { | ||
results.push_back(j); | ||
} | ||
|
||
bool res = check_range_neighbors<Scalar, VectorType, VectorContainer>(points, indices, point, r, results, true); | ||
VERIFY(res); | ||
} | ||
}; | ||
|
||
|
||
// Generate N random points | ||
typename KdTreeDense<DataPoint>::IndexContainer ids(N); | ||
std::iota(ids.begin(), ids.end(), 0); | ||
|
||
auto points = VectorContainer(N); | ||
std::generate(points.begin(), points.end(), []() {return DataPoint(VectorType::Random()); }); | ||
|
||
// Test on 100% random points | ||
{ | ||
test_tree(points, ids, cellSize); | ||
} | ||
|
||
// Generate a small part of duplicates by extending the index container | ||
{ | ||
const int nbDuplicates = N; | ||
|
||
ids.resize(nbDuplicates+N); | ||
std::generate(ids.begin()+N, ids.end(), [N]() {return Eigen::internal::random<int>(0,N-1); }); | ||
|
||
test_tree(points, ids, cellSize); | ||
} | ||
|
||
// Generate duplicated coordinates samples TODO | ||
// { | ||
// const int nbDuplicates = N/10; | ||
// const int nbUniques = N; | ||
// | ||
// auto points = VectorContainer(nbUniques); | ||
// std::generate(points.begin(), points.end(), []() {return DataPoint(VectorType::Random()); }); | ||
// | ||
// typename KdTreeDense<DataPoint>::IndexContainer ids(nbUniques); | ||
// std::iota(ids.begin(), ids.end(), 0); | ||
// ids.resize(nbDuplicates*nbUniques); | ||
// | ||
// for (int i = 1; i < nbDuplicates; ++i) | ||
// { | ||
// std::copy(ids.begin(), ids.begin() + nbUniques, ids.begin()+(nbUniques*i)); | ||
// } | ||
// test_tree(points, ids, cellSize); | ||
// } | ||
|
||
} | ||
|
||
template<typename NodeType> | ||
void testKdTreeNode() { | ||
std::vector<NodeType> buffer; | ||
|
||
buffer.resize(10); | ||
|
||
// simple predicate that only check if a node is a leaf or not | ||
auto nodePredicate = [](const NodeType& n1, const NodeType& n2) -> bool { | ||
return n1.is_leaf() == n2.is_leaf(); | ||
}; | ||
|
||
auto checkProperties = [nodePredicate](std::vector<NodeType>& buf, bool targetLeafState) -> void{ | ||
// Check that references works well: | ||
for (auto& b : buf ) b.set_is_leaf(targetLeafState); | ||
for (const auto& b : buf ) VERIFY( b.is_leaf() == targetLeafState ); | ||
|
||
// Check that copies are working well | ||
std::vector<NodeType> other; | ||
other.reserve(buf.size()); | ||
other = buf; | ||
VERIFY(std::equal(buf.cbegin(), buf.cend(), other.cbegin(), other.cend(), nodePredicate)); | ||
|
||
// Check that reallocation works well | ||
other.resize(buf.size()*2); | ||
VERIFY(std::equal(buf.cbegin(), buf.cend(), other.cbegin(), other.cbegin()+buf.size(), nodePredicate)); | ||
}; | ||
|
||
checkProperties(buffer, true); | ||
checkProperties(buffer, false); | ||
} | ||
|
||
int main(int argc, char** argv) | ||
{ | ||
if (!init_testing(argc, argv)) | ||
{ | ||
return EXIT_FAILURE; | ||
} | ||
|
||
using PointType = TestPoint<float, 3>; | ||
using KdTreeTraits = KdTreeDefaultTraits<PointType>; | ||
|
||
cout << "Test KdTreeDefaultNode" << endl; | ||
testKdTreeNode<typename KdTreeTraits::NodeType>(); | ||
|
||
cout << "Test KdTreeRange with large number of duplicated points" << endl; | ||
testKdtreeWithDuplicate<PointType>(); | ||
|
||
} |