- Fluid Mechanics(Frank M.White)
- Fundamentals of Aerodynamics(John D.Anderson)
- The Airplane: A History of Its Technology(John D.Anderson)
- Hypersonic and High-Temperature Gas Dynamics(John D.Anderson)
- 空气动力学(钱翼稷)
- 气动弹性设计基础(杨超)
- 流固耦合力学基础及其应用(张伟伟)
- 飞机气动弹性力学及载荷理论(Jan R. Wright)
- 浅谈流体力学发展——从Batchelor百年诞辰纪念大会谈起, 朱伟[力学学报,2023]
- 计算流体力学基础及其应用(John D.Anderson)
- An Introduction to Computational Fluid Dynamics The Finite Volume Method(H.Versteeg)
- Computational Methods for Fluid Dynamics(H. Ferziger)
- 计算流体力学方法及应用(阎超)
- 航空CFD四十年的成就与困境, 阎超[航空学报,2021]
- A Perspective on the State of Aerospace Computational Fluid Dynamics Technology, Mori Mani[Annual Review of Fluid Mechanics,2023]
- Immersed Boundary Methods:Historical Perspective and Future Outlook, Roberto Verzicco[Annual Review of Fluid Mechanics,2023]
- Generalized Formulation and Review of Piston Theory for Airfoils, Marius-Corné Meijer[AIAA, 2015]
- 现代计算气动弹性力学(徐敏)
- 计算流固耦合力学(陈刚)
- Modeling of Fluid-Structure Interaction, Earl H Dowell[Annual Review of Fluid Mechanics,2001]
- 多场耦合求解非线性气动弹性的研究综述, 安效民[力学进展, 2009]
- Numerical Methods for Fluid-Structure Interaction — A Review, Gene Hou[Communications in Computational Physics, 2015]
- A review on non-linear aeroelasticity of high aspect-ratio wings, Frederico Afonso[Progress in Aerospace Sciences, 2017]
- Classifications, applications, and design challenges of drones: A review, M. Hassanalian[Progress in Aerospace Sciences, 2017]
- Membrane wing aerodynamics for micro air vehicles, Yongsheng Lian and Wei Shyy[Progress in Aerospace Sciences, 2003]
- A review of membrane-wing aeroelasticity, Sonya Tiomkin[Progress in Aerospace Sciences, 2021]
- Recent developments in the aeroelasticity of morphing aircraft, Rafic M. Ajaj[Progress in Aerospace Sciences, 2021]
- Morphing skins, C. Thill[The Aeronautical Journal, 2008]
- Design and applications of morphing aircraft and their structures, Jihong Zhu[Frontiers of Mechanical Engineering, 2023]
- Review on the use of piezoelectric materials for active vibration, noise, and flow control, P Shivashankar[Smart Materials and Structures, 2020]
- Morphing aircraft based on smart materials and structures: A state-of-the-art review, [Journal of Intelligent Material Systems and Structures, 2016]
- 智能可变形飞行器关键技术发展现状及展望, 白鹏[空气动力学学报, 2019]
- 变体飞行器智能材料驱动器和柔性蒙皮研究进展, 杨森[航空工程进展, 2023]
- 智能柔性变形机翼技术的应用与发展, 祝连清[机械工程学报, 2018]
- Design, modeling, and control of morphing aircraft:A review, Lingling CHU[Chinese Journal of Aeronautics, 2022]
- The aerodynamic theory of sails. I. Two-dimensional sails, Thwaites[Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1961]
- Theory of Flexible Aerodynamic Surfaces, J. N. Nielsen[Journal of Applied Mechanics, 1963]
- Nonlinear two‐dimensional sail theory, Jean‐Marc Vanden‐Broeck[POF, 1982]
- Computational Model of Flexible Membrane Wings in Steady Laminar Flow, Richard Smith and Wei Shyy[AIAA, 1995]
- Computation of aerodynamic coefficients for a flexible membrane airfoil in turbulent flow: A comparison with classical theory, Richard Smith and Wei Shyy[POF, 1996]
- Dynamics of a Compliant Membrane as Related to Mammalian Flight, Arnold Song[AIAA, 2007]
- Aeromechanics of Membrane Wings with Implications for Animal Flight, Arnold Song[AIAA, 2008]
- Unsteady Aerodynamics of Membrane Airfoils, P.Rojratsirikul[AIAA, 2008]
- Unsteady fluid–structure interactions of membrane airfoils at low Reynolds numbers, P.Rojratsirikul[Experiments in Fluids, 2009]
- Effect of pre-strain and excess length on unsteady fluid–structure interactions of membrane airfoils, P.Rojratsirikul[Journal of Fluids and Structures, 2010]
- Flow-induced vibrations of low aspect ratio rectangular membrane wings, P.Rojratsirikul[Journal of Fluids and Structures, 2011]
- High fidelity computational simulation of a membrane wing airfoil, R.E. Gordnier[Journal of Fluids and Structures, 2009]
- On membrane-wing stability in laminar flow, Sonya Tiomkin[Journal of Fluids and Structures, 2019]
- Camber and aerodynamic performance of compliant membrane wings[Journal of Fluids and Structures, 2017]
- Optimal Actuation of Dielectric Membrane Wings using High-Fidelity Fluid-Structure Modelling, Ruben Sanchez[AIAA, 2017]
- Three-Dimensional Fluid-Structure Interactions of a Membrane Wing for Micro Air Vehicle Applications, Yongsheng Lian and Wei Shyy[AIAA, 2003]
- Aerodynamic control of micro air vehicle wings using electroactive membranes, Michael R Hays[Journal of Intelligent Material Systems and Structures, 2012]
- Electro-aeromechanical modelling of actuated membrane wings, Stefano Buoso[Journal of Fluids and Structures, 2015]
- High-fidelity modelling and feedback control of bio-inspired membrane wings, Stefano Buoso[PhD thesis, 2016]
- Aerodynamic Characterization of a Wing Membrane with Variable Compliance, Oscar M. Curet[AIAA, 2014]
- Oscillatory motions of a prestrained compliant membrane caused by fluid–membrane interaction, M. Molki[Journal of Fluids and Structures, 2010]
- Fluid–structure coupling mechanism and its aerodynamic effect on membrane aerofoils, Sonia Serrano-Galiano[JFM, 2018]
- Experimental Study of Aerodynamic Characteristics of Partially Flexible NACA0012 Airfoil, Xiaojing Sun[AIAA, 2022]
- 低雷诺数下翼面局部振动增升机理研究, 康伟[航空学报, 2015]
- Large-Eddy Simulation of Low-Reynolds-Number Flow Over Thick and Thin NACA Airfoils, Ryoji Kojima[AIAA, 2013]
- 翼型低雷诺数层流分离泡数值研究, 白鹏[空气动力学学报, 2006]
- 翼型低Re数小攻角非线性非定常层流分离现象研究, 白鹏[中国科学:物理学 力学 天文学, 2015]
- Control of low Reynolds number flows by means of fluid–structure interactions, I. Gursul[Progress in Aerospace Sciences, 2014]
- Review of hybrid laminar flow control systems, K.S.G. Krishnan[Progress in Aerospace Sciences, 2017]
- 层流流动主/被动控制技术, 朱自强[航空学报, 2016]
- 翼型动态失速影响因素及流动控制研究进展, 杨鹤森[航空学报, 2020]
- Control of laminar separation bubble over wind turbine airfoil using partial flexibility on suction surface, Halil Hakan Açıkel[Energy, 2018]
- Passive Airfoil Tonal Noise Reduction by Localized Flow-Induced Vibration of an Elastic Panel, Irsalan Arif[Aerospace Science and Technology, 2020]
- Aerodynamics and fluid–structure interaction of an airfoil with actively controlled flexible leeward surface, Xi He[JFM, 2023]
- Fluid–structure interaction of a flexible membrane wing at a fixed angle of attack, Xi He and Jin-Jun Wang[POF, 2020]
- Flow-excited membrane instability at moderate Reynolds numbers, Guojun Li[JFM, 2021]
- Fluid–structure coupling mechanism and its aerodynamic effect on membrane aerofoils, Sonia Serrano-Galiano[JFM, 2018]
- The Proper Orthogonal Decomposition in the Analysis of Turbulent Flows, G Berkooz[Annual Review of Fluid Mechanics,1993]
- Modal Analysis of Fluid Flows: An Overview, Kunihiko Taira and Steven L. Brunton[AIAA, 2017]
- Modal Analysis of Fluid Flows: Applications and Outlook, Kunihiko Taira and Steven L. Brunton[AIAA, 2019]
- Dynamic Mode Decomposition, J. Nathan Kutz, Steven L. Brunton[2016]
- 动力学模态分解及其在流体力学中的应用, 寇家庆[空气动力学学报, 2018]
- Dynamic Mode Decomposition and Its Variants, Peter J. Schmid[Annual Review of Fluid Mechanics,2022]
- Dynamic mode decomposition of numerical and experimental data, Peter J. Schmid[JFM, 2010]
- On dynamic mode decomposition: Theory and applications, Jonathan H. Tu[Journal of Computational Dynamics, 2013]
- (Forward-backward DMD)Characterizing and correcting for the effect of sensor noise in the dynamic mode decomposition, Scott T. M. Dawson[Experiments in Fluids, 2016]
- (Randomized DMD)Randomized Dynamic Mode Decomposition, N. Benjamin Erichson[SIAM Journal on Applied Dynamical Systems, 2019]
- (Total least-squares DMD)De-biasing the dynamic mode decomposition for applied Koopman spectral analysis of noisy datasets, Maziar S. Hemati[Theoretical and Computational Fluid Dynamics, 2017]
- (DMD with control)Dynamic Mode Decomposition with Control, Joshua L. Proctor[SIAM Journal on Applied Dynamical Systems, 2016]
- (Higher order DMD)Higher Order Dynamic Mode Decomposition, Soledad Le Clainche and José M. Vega[SIAM Journal on Applied Dynamical Systems, 2017]
- (Recursive DMD)Recursive Dynamic Mode Decomposition for the flow around two square cylinders in tandem configuration, W. Stankiewicz[Journal of Fluids and Structures, 2022]
- (Optimized DMD)Variable Projection Methods for an Optimized Dynamic Mode Decomposition, Travis Askham and J. Nathan Kutz[SIAM Journal on Applied Dynamical Systems, 2018]
- (Physics-informed DMD)Physics-informed dynamic mode decomposition (piDMD), Peter J. Baddoo[Proceedings of the Royal Society A 479(2271), 2023]
- (Parametric DMD)A Dynamic Mode Decomposition Extension for the Forecasting of Parametric Dynamical Systems, Francesco Andreuzzi[SIAM Journal on Applied Dynamical Systems, 2023]
- (Exact DMD)On dynamic mode decomposition: Theory and applications, Jonathan H. Tu[Journal of Computational Dynamics, 2013]
- (Extended DMD)A kernel-based method for data-driven koopman spectral analysis, Matthew O. Williams and Clarence W. Rowley[Journal of Computational Dynamics, 2015]
- Variants of Dynamic Mode Decomposition: Boundary Condition, Koopman, and Fourier Analyses, Kevin K. Chen[Journal of Nonlinear Science, 2012]
- An improved criterion to select dominant modes from dynamic mode decomposition, Jiaqing Kou[European Journal of Mechanics - B/Fluids, 2017]
- Modal Analysis of Transonic Shock Buffet on 2D Airfoil, Lior Poplingher[AIAA, 2019]
- Model Reduction and Analysis of Deep Dynamic Stall on a Plunging Airfoil using Dynamic Mode Decomposition, Arvind T. Mohan[Computers & Fluids, 2016]
- Analysis of Airfoil Stall Control Using Dynamic Mode Decomposition, Arvind T. Mohan[AIAA, 2017]
- Model reduction using Dynamic Mode Decomposition, Gilles Tissot[Comptes Rendus Mécanique, 2014]
- Analysis of low-order modal coherent structures in cavitation flow field based on dynamic mode decomposition and finite-time Lyapunov exponent, Yanzhao Wu[POF, 2023]
- Vortex shedding analysis of flows past forced-oscillation cylinder with dynamic mode decomposition, Zhang Huahai[POF, 2023]
- Origins of atypical shock buffet motions on a supercritical aerofoil, Nicholas F. Giannelis[Aerospace Science and Technology, 2020]
- 低速翼型绕流的多模态耦合与流动稳定性研究, 康伟[西北工业大学学报, 2015]
- 动力学模态分解和本征正交分解对圆柱绕流稳定性的分析, 叶坤[西北工业大学学报, 2017]
- 基于POD和DMD方法的跨声速抖振模态分析, 寇家庆[航空学报, 2016]
- Machine Learning for Fluid Mechanics, Steven L. Brunton and Bernd R. Noack[Annual Review of Fluid Mechanics, 2020]
- Model Reduction for Flow Analysis and Control, Clarence W. Rowley and Scott T.M. Dawson[Annual Review of Fluid Mechanics, 2016]
- Physics-informed neural networks (PINNs) for fluid mechanics: a review, Shengze Cai[Acta Mechanica Sinica, 2022]
- Neural Networks-Based Aerodynamic Data Modeling: A Comprehensive Review, Liwei Hu[IEEE Access, 2020]
- Deep learning in fluid dynamics, J. Nathan Kutz[JFM, 2017]
- Data-driven modeling for unsteady aerodynamics and aeroelasticity, Jiaqing Kou[Progress in Aerospace Sciences, 2021]
- PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation, R. Qi Charles[2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017]
- PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space, Charles R. Qi[arXiv:Computer Vision and Pattern Recognition, 2017]
- Fast pressure distribution prediction of airfoils using deep learning, Xinyu Hui[Aerospace Science and Technology, 2020]
- Fast flow field prediction over airfoils using deep learning approach, Vinothkumar Sekar[POF, 2019]
- Inverse Design of Airfoil Using a Deep Convolutional Neural Network, Vinothkumar Sekar[AIAA, 2019]
- DeepCFD: Efficient Steady-State Laminar Flow Approximation with Deep Convolutional Neural Networks, M. Ribeiro[arXiv, 2020]Github
- Deep neural networks for nonlinear model order reduction of unsteady flows, Hamidreza Eivazi[POF, 2020]
- FlexWing-ROM: A matlab framework for data-driven reduced-order modeling of flexible wings, Urban Fasel[Journal of Open Source Software, 2022]Github
- Convolutional neural network based hierarchical autoencoder for nonlinear mode decomposition of fluid field data, Kai Fukami[POF, 2020]
- Machine-learning-based reduced-order modeling for unsteady flows around bluff bodies of various shapes, Kazuto Hasegawa[ Theoretical and Computational Fluid Dynamics, 2020]
- A point-cloud deep learning framework for prediction of fluid flow fields on irregular geometries, Ali Kashefi[POF, 2021]
- Physics-informed PointNet: A deep learning solver for steady-state incompressible flows and thermal fields on multiple sets of irregular geometries, Ali Kashefi[Journal of Computational Physics, 2022]
- Construction of reduced-order models for fluid flows using deep feedforward neural networks, Hugo F. S. Lui[JFM, 2019]
- Compressed Convolutional LSTM: An Efficient Deep Learning Framework to Model High Fidelity 3D Turbulence, Arvind T. Mohan[arXiv: Fluid Dynamics, 2019]
- Nonlinear mode decomposition with convolutional neural networks for fluid dynamics, Takaaki Murata[JFM, 2019]
- A deep learning enabler for nonintrusive reduced order modeling of fluid flows, S. Pawar[POF, 2019]
- Unsteady reduced-order model of flow over cylinders based on convolutional and deconvolutional neural network structure, Jiang-Zhou Peng[POF, 2020]
- Deep learning method for identifying the minimal representations and nonlinear mode decomposition of fluid flows, Jiagang Qu[POF, 2021]
- Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations, M. Raissi[Journal of Computational Physics, 2019]
- An artificial neural network framework for reduced order modeling of transient flows, Omer San[Communications in Nonlinear Science and Numerical Simulation, 2019]
- A deep learning framework for aerodynamic pressure prediction on general three-dimensional configurations, Yang Shen[POF, 2023]Github
- Airfoil-based convolutional autoencoder and long short-term memory neural network for predicting coherent structures evolution around an airfoil, Bo Zhang[Computers & Fluids, 2023]
- Nonlinear mode decomposition via physics-assimilated convolutional autoencoder for unsteady flows over an airfoil, Bo Zhang[POF, 2023]
- 自动编码器在流场降阶中的应用, 叶舒然[空气动力学学报, 2019]
- Vortex-Induced Vibrations, C.H.K. Williamson, and R. Govardhan[Annual Review of Fluid Mechanics, 2004]
- Review of active control of circular cylinder flow, Wen-Li Chen[Ocean Engineering, 2022]
- Review of passive control of flow past a circular cylinder, Yize Ran[Journal of Visualization, 2022]