Skip to content

prakharsingh95/Model-vs-Model-Free-RL

Repository files navigation

Model vs Model-Free RL

Demos

DQN

CarRacing-v0 VizdoomDefendCenter-v0

World Models

Real Rollout Hallucinated Rollout

Training World Models

Training VAE

  • Source set_pythonpath.bash
  • Go into the dataset/car_racing directory and run rollout_wrapper.py
  • Run make_csv.py in datasets/car_racing
  • Call train_vae.py
  • Sampled mappings of noise reconstructions are seen in results

Increase the number of rollouts in rollout.bash and rollout.py to generate more data. This currently trains on the random action policy, so there isn't much variation in the road.

Training MDRNN

  • Train VAE as above (duh!)
  • Call train_mdrnn.py

Training Controller

  • Train the VAE and MDRNN
  • Call python train_controller.py --n-samples 4 --pop-size 6 --target-return 950 --max-workers=12
    • max-workers sets how many population parameters to run in parallel, where each population requires a core for evaluation

Note that training the MDRNN requires that the VAE is well trained, and training the controller requires that both the VAE and MDRNN are well trained! It's important to retrain the VAE and MDRNN as the agent explores more of the environment. These three steps are looped in train.bash.

Training DQN

xvfb-run -a -s "-screen 0 1400x900x24 +extension RANDR" python3 train_dqn.py --task "CarRacing-v0 --train 2000 --eval 100"

Note that xvfb-run is necessary iff you are training on computer without a display connected (e.g. over SSH).

About

No description or website provided.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published