Skip to content

Cytometry by time-of-flight(CyTOF) data is very useful in studying the presence/absence of antigens/surface markers at single cell level. There are multiple tools to analyze CyTOF data but here I am presenting a tutorial of how one can quickly use Seurat (R package for scRNA-Seq analysis) for analyzing CyTOF data and understand the cellular and …

License

Notifications You must be signed in to change notification settings

praneet1988/Analyze_CyTOF_Using_Seurat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

17 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Analyze CyTOF Using Seurat

Cytometry by time-of-flight(CyTOF) data is very useful in studying the presence/absence of antigens/surface markers at single cell level. There are multiple tools to analyze CyTOF data but here I am presenting a tutorial of how one can quickly use Seurat (R package for scRNA-Seq analysis) [https://satijalab.org/seurat/] for analyzing CyTOF data and understanding the cellular and phenotypic diversity at cellular level.

There are five major steps:

Step1: Reading .fcs files using read.flowSet function from flowCore R package

Step2: Using Arcsinh transformation to normalize the fcs files. Read more [https://support.cytobank.org/hc/en-us/articles/206148057-About-the-Arcsinh-transform]

Step3: Create a Seurat Object using normalized counts from .fcs files

Step4: Run Dimensionality reduction, clustering and then visualize cells

Step5: Integrate Seurat objects to understand similarities and differences among cell-types learnt from each .fcs file

R packages required

Step1: Reading .fcs files using read.flowSet function from flowCore R package

Let's read the .fcs files using read.flowSet. [Here I am showing analysis tutorial for 2 fcs samples]

fcs_raw1 <- read.flowSet('fcs_raw1.fcs', path = getwd(), transformation = FALSE, truncate_max_range = FALSE)

fcs_raw2 <- read.flowSet('fcs_raw2.fcs', path = getwd(), transformation = FALSE, truncate_max_range = FALSE)

Let's read the panel file which provides information on the markers

panel_filename <- "CyTOF_panel.xlsx"

panel <- read_excel(panel_filename)

panel$Antigen <- gsub("/", "_", panel$Antigen)

panel$Antigen <- gsub("-", "_", panel$Antigen)

panel_fcs_raw1 <- pData(parameters(fcs_raw1[[1]]))

panel_fcs_raw2 <- pData(parameters(fcs_raw2[[1]]))

panel_fcs_raw1$desc <- gsub("/", "_", panel_fcs_raw1$desc)

panel_fcs_raw1$desc <- gsub("-", "_", panel_fcs_raw1$desc)

panel_fcs_raw2$desc <- gsub("/", "_", panel_fcs_raw2$desc)

panel_fcs_raw2$desc <- gsub("-", "_", panel_fcs_raw2$desc)

(lineage_markers <- panel$Antigen[panel$Lineage == 1])

(functional_markers <- panel$Antigen[panel$SurfaceMarkers == 1])

Step2: Using Arcsinh transformation to normalize the fcs files

Let's perform the Arcsinh transformation for fcs_raw_1 and fcs_raw_2

fcs_1 <- fsApply(fcs_raw1, function(x, cofactor = 5){

colnames(x) <- panel_fcs_raw1$desc

expr <- exprs(x)

expr <- asinh(expr[, c(panel_fcs_raw1$desc)] / cofactor)

exprs(x) <- expr

x

})

fcs_1

fcs_2 <- fsApply(fcs_raw2, function(x, cofactor = 5){

colnames(x) <- panel_fcs_raw2$desc

expr <- exprs(x)

expr <- asinh(expr[, c(panel_fcs_raw2$desc)] / cofactor)

exprs(x) <- expr

x

})

fcs_2

Create Seurat Object using normalized expression from fcs files

Let's create Seurat objects for two fcs samples:

Seurat Object for first fcs sample

expr_fcs_1 <- fsApply(fcs_1, exprs)

expr_fcs_1 <- as.matrix(t(expr_fcs_1))

Cells <- c()

SampleName <- c()

TimePoint <- c()

for (f in 1:ncol(expr_fcs_1))

{

a <- paste("sample_",f, sep="")

Cells <- c(Cells,a)

a <- paste("sample")

SampleName <- c(SampleName, a)

a <- paste("time")

TimePoint <- c(TimePoint, a)

}

colnames(expr_fcs_1) <- Cells

metadata <- cbind(Cells, SampleName, TimePoint)

metadata <- data.frame(metadata)

pd <- new("AnnotatedDataFrame", data = metadata)

rownames(pd) <- pd$Cells

Obj_fcs_1 <- CreateSeuratObject(expr_fcs_1)

CellsMeta = Obj_fcs_1@meta.data

CellsMeta["SampleName"] <- pd$SampleName

CellsMetaTrim <- subset(CellsMeta, select = c("SampleName"))

Obj_fcs_1 <- AddMetaData(Obj_fcs_1, CellsMetaTrim)

CellsMeta = Obj_fcs_1@meta.data

CellsMeta["TimePoint"] <- pd$TimePoint

CellsMetaTrim <- subset(CellsMeta, select = c("TimePoint"))

Obj_fcs_1 <- AddMetaData(Obj_fcs_1, CellsMetaTrim)

Seurat Object for second fcs sample

expr_fcs_2 <- fsApply(fcs_2, exprs)

expr_fcs_2 <- as.matrix(t(expr_fcs_2))

Cells <- c()

SampleName <- c()

TimePoint <- c()

for (f in 1:ncol(expr_fcs_2))

{

a <- paste("sample_",f, sep="")

Cells <- c(Cells,a)

a <- paste("sample")

SampleName <- c(SampleName, a)

a <- paste("time")

TimePoint <- c(TimePoint, a)

}

colnames(expr_fcs_2) <- Cells

metadata <- cbind(Cells, SampleName, TimePoint)

metadata <- data.frame(metadata)

pd <- new("AnnotatedDataFrame", data = metadata)

rownames(pd) <- pd$Cells

Obj_fcs_2 <- CreateSeuratObject(expr_fcs_2)

CellsMeta = Obj_fcs_2@meta.data

CellsMeta["SampleName"] <- pd$SampleName

CellsMetaTrim <- subset(CellsMeta, select = c("SampleName"))

Obj_fcs_2 <- AddMetaData(Obj_fcs_2, CellsMetaTrim)

CellsMeta = Obj_fcs_2@meta.data

CellsMeta["TimePoint"] <- pd$TimePoint

CellsMetaTrim <- subset(CellsMeta, select = c("TimePoint"))

Obj_fcs_2 <- AddMetaData(Obj_fcs_2, CellsMetaTrim)

Step4: Variable feature selection, dimension reduction, clustering and visualization

For Obj_fcs_1

VariableFeatures(Obj_fcs_1) <- rownames(Obj_fcs_1)

Obj_fcs_1 <- ScaleData(Obj_fcs_1)

Obj_fcs_1 <- RunPCA(Obj_fcs_1, verbose = TRUE)

Obj_fcs_1 <- FindNeighbors(Obj_fcs_1, dims = 1:10, verbose = TRUE)

Obj_fcs_1 <- FindClusters(Obj_fcs_1, verbose = TRUE)

Obj_fcs_1 <- RunUMAP(Obj_fcs_1, dims = 1:10, verbose = TRUE)

Obj_fcs_1 <- RunTSNE(Obj_fcs_1, dims = 1:10, verbose = TRUE)

DimPlot(Obj_fcs_1, reduction="umap", pt.size=1)

DimPlot(Obj_fcs_1, reduction="tsne", pt.size=1)

For Obj_fcs_2

VariableFeatures(Obj_fcs_2) <- rownames(Obj_fcs_2)

Obj_fcs_2 <- ScaleData(Obj_fcs_2)

Obj_fcs_2 <- RunPCA(Obj_fcs_2, verbose = TRUE)

Obj_fcs_2 <- FindNeighbors(Obj_fcs_2, dims = 1:10, verbose = TRUE)

Obj_fcs_2 <- FindClusters(Obj_fcs_2, verbose = TRUE)

Obj_fcs_2 <- RunUMAP(Obj_fcs_2, dims = 1:10, verbose = TRUE)

Obj_fcs_2 <- RunTSNE(Obj_fcs_2, dims = 1:10, verbose = TRUE)

DimPlot(Obj_fcs_2, reduction="umap", pt.size=1)

DimPlot(Obj_fcs_2, reduction="tsne", pt.size=1)

Step5: Integration of Obj_fcs_1 and Obj_fcs_2 to uncover similarities and differences among cell types from each sample

Integration.anchors <- FindIntegrationAnchors(object.list = list(Obj_fcs_1, Obj_fcs_2), dims = 1:20)

Integration.combined <- IntegrateData(anchorset = Integration.anchors, dims = 1:20)

DefaultAssay(Integration.combined) <- "integrated"

Integration.combined <- ScaleData(Integration.combined)

Integration.combined <- RunPCA(Integration.combined, verbose = TRUE)

Integration.combined <- RunUMAP(Integration.combined, reduction = "pca", dims = 1:10)

Integration.combined <- RunTSNE(Integration.combined, reduction = "pca", dims = 1:10)

Integration.combined <- FindNeighbors(Integration.combined, reduction = "pca", dims = 1:10)

Integration.combined <- FindClusters(Integration.combined, resolution = 0.5)

DimPlot(Integration.combined, pt.size=1)

UMAP Plot after integration (Please Note this is example plot)

Graph

All the steps here are based on the analysis for determining cell types from CyTOF data and if you are using these steps then please change parameters accordingly

About

Cytometry by time-of-flight(CyTOF) data is very useful in studying the presence/absence of antigens/surface markers at single cell level. There are multiple tools to analyze CyTOF data but here I am presenting a tutorial of how one can quickly use Seurat (R package for scRNA-Seq analysis) for analyzing CyTOF data and understand the cellular and …

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published