Skip to content

Commit

Permalink
fix pdf compile error
Browse files Browse the repository at this point in the history
  • Loading branch information
prashjha committed Oct 18, 2024
1 parent 0b8f342 commit f695f33
Showing 1 changed file with 4 additions and 4 deletions.
8 changes: 4 additions & 4 deletions docs/joss/paper.md
Original file line number Diff line number Diff line change
Expand Up @@ -56,7 +56,7 @@ where ${\rho}^{(p)}$, ${\boldsymbol{f}}^{(p)}_{int}$, and ${\boldsymbol{f}}^{(p)
Since all expressions in this paragraph are for a fixed particle $p$, we drop the superscript $p$, noting that material properties and other quantities can depend on the particle $p$.
Following [@silling2007peridynamic] and simplified expression of state-based peridynamics force in [@jha2021peridynamics], the internal force takes the form, for $\boldsymbol{X} \in {\Omega}^{(p)}_0$,
\begin{equation}
{\boldsymbol{f}}^{(p)}_{int}(\boldsymbol{X}, t) = \int_{B_{\epsilon}(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} \left( \boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X}) \right) \, \dd \boldsymbol{Y}\,,
{\boldsymbol{f}}^{(p)}_{int}(\boldsymbol{X}, t) = \int_{B_{\epsilon}(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} \left( \boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X}) \right) \, \mathrm{d} \boldsymbol{Y}\,,
\end{equation}
where $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsymbol{Y}}(\boldsymbol{X})$ is the force on $\boldsymbol{X}$ due to nonlocal interaction with $\boldsymbol{Y}$. Let $R = |\boldsymbol{Y} - \boldsymbol{X}|$ be the reference bond length, $r = |\boldsymbol{x}(\boldsymbol{Y}) - \boldsymbol{x}(\boldsymbol{X})|$ current bond length, $s(\boldsymbol{Y}, \boldsymbol{X}) = (r - R)/R$ bond strain, then $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y})$ is given by [@silling2007peridynamic, @jha2021peridynamics]
\begin{equation}
Expand All @@ -65,8 +65,8 @@ where $\boldsymbol{T}_{\boldsymbol{X}}(\boldsymbol{Y}) - \boldsymbol{T}_{\boldsy
where
\begin{equation}
\begin{split}
m_{\boldsymbol{X}} &= \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} R^2 J(R/\epsilon) \, \dd \boldsymbol{Y}\,,\\
\theta_{\boldsymbol{X}} &= h(s) \frac{3}{m_{\boldsymbol{X}}} \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} (r - R) \, R \, J(R/\epsilon) \, \dd \boldsymbol{Y}\,,\\
m_{\boldsymbol{X}} &= \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} R^2 J(R/\epsilon) \, \mathrm{d} \boldsymbol{Y}\,,\\
\theta_{\boldsymbol{X}} &= h(s) \frac{3}{m_{\boldsymbol{X}}} \int_{B_\epsilon(\boldsymbol{X}) \cap {\Omega}^{(p)}_0} (r - R) \, R \, J(R/\epsilon) \, \mathrm{d} \boldsymbol{Y}\,,\\
h(s) &= \begin{cases}
1\,, &\qquad \text{if } s < s_0 := \sqrt{\frac{\mathcal{G}_c}{\left(3 G + (3/4)^4 \left[\kappa - 5G/3\right]\right)\epsilon}}\,, \\
0\,, & \qquad \text{otherwise}\,.
Expand All @@ -90,7 +90,7 @@ where $\boldsymbol{b}$ is body force per unit mass, $\boldsymbol{f}^{\Omega_0, (
\end{equation}
Then the force on particle $p$ due to contact with particle $q$ can be written as [@jha2021peridynamics}]:
\begin{equation}
{\boldsymbol{f}}^{(q),(p)} (\boldsymbol{X}, t) = \int_{\boldsymbol{Y} \in {\Omega}^{(q)}_0 \cap B_{{R}^{(q),(p)}}(\boldsymbol{X})} \left( {\boldsymbol{f}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) + {\boldsymbol{f}}^{(q),(p)}_T(\boldsymbol{Y}, \boldsymbol{X}) \right)\, \dd \boldsymbol{Y}\,,
{\boldsymbol{f}}^{(q),(p)} (\boldsymbol{X}, t) = \int_{\boldsymbol{Y} \in {\Omega}^{(q)}_0 \cap B_{{R}^{(q),(p)}}(\boldsymbol{X})} \left( {\boldsymbol{f}}^{(q),(p)}_N(\boldsymbol{Y}, \boldsymbol{X}) + {\boldsymbol{f}}^{(q),(p)}_T(\boldsymbol{Y}, \boldsymbol{X}) \right)\, \mathrm{d} \boldsymbol{Y}\,,
\end{equation}
with normal and tangential forces following [@jha2021peridynamics, @desai2019rheometry] given by
\begin{equation}
Expand Down

0 comments on commit f695f33

Please sign in to comment.