A state of the art real-time object detection system for C# (Visual Studio). This project has CPU and GPU support, with GPU the detection works much faster. The primary goal of this project is an easy use of yolo, this package is available on nuget and you must only install two packages to start detection. In the background we are use the Windows Yolo version of AlexeyAB/darknet. Send an image path or the byte array to yolo and receive the position of the detected objects. Our project is meant to return the object-type and -position as processable data.
Quick install Alturos.Yolo over nuget
PM> install-package Alturos.Yolo (c# wrapper and c++ dlls 22MB)
PM> install-package Alturos.YoloV2TinyVocData (Pre-Trained Dataset 56MB)
var configurationDetector = new ConfigurationDetector();
var config = configurationDetector.Detect();
//using (var yoloWrapper = new YoloWrapper("yolov2-tiny-voc.cfg", "yolov2-tiny-voc.weights", "voc.names"))
using (var yoloWrapper = new YoloWrapper(config))
{
var items = yoloWrapper.Detect(@"image.jpg");
//items[0].Type -> "Person, Car, ..."
//items[0].Confidence -> 0.0 (low) -> 1.0 (high)
//items[0].X -> bounding box
//items[0].Y -> bounding box
//items[0].Width -> bounding box
//items[0].Height -> bounding box
}
- .NET Framework 4.6.1
- Microsoft Visual C++ 2017 Redistributable x64
- Install Nvidia CUDA Toolkit 9.2 (must be installed add a hardware driver for cuda support)
- Download Nvidia cuDNN v7.1.4 for CUDA 9.2 (DLL cudnn64_7.dll required for gpu processing)
- Visual Studio 2017
Average processing speed of test images bird1.png, bird2.png, car1.png, motorbike1.png
Processor | YOLOv2-tiny | YOLOv3 | yolo9000 |
---|---|---|---|
Intel i7 3770 | 290 ms | 2380 ms | - |
Intel Xeon E5-1620 v3 | 207 ms | 4327 ms | - |
Intel Xeon E3-1240 v6 | 182 ms | 3213 ms | - |
Graphic card | Single precision | Memory | Slot | YOLOv2-tiny | YOLOv3 | yolo9000 |
---|---|---|---|---|---|---|
NVIDIA Quadro K420 | 300 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro K620 | 768 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro K1200 | 1151 GFLOPS | 4 GB | Single | - | - | - |
NVIDIA Quadro P400 | 599 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro P600 | 1117 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro P620 | 1386 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA Quadro P1000 | 1862 GFLOPS | 4 GB | Single | - | - | - |
NVIDIA Quadro P2000 | 3011 GFLOPS | 5 GB | Single | - | - | - |
NVIDIA Quadro P4000 | 5304 GFLOPS | 8 GB | Single | - | - | - |
NVIDIA Quadro P5000 | 8873 GFLOPS | 16 GB | Dual | - | - | - |
NVIDIA GeForce GT 710 | 366 GFLOPS | 2 GB | Single | - | - | - |
NVIDIA GeForce GT 730 | 693 GFLOPS | 2-4 GB | Single | - | - | - |
NVIDIA GeForce GT 1030 | 1098 GFLOPS | 2 GB | Single | 40 ms | 170 ms | - |
NVIDIA GeForce GTX 1060 | 4372 GFLOPS | 6 GB | Dual | 25 ms | 100 ms | - |
Model | Processing Resolution | Cfg | Weights | Names |
---|---|---|---|---|
YOLOv3 | 608x608 | yolov3.cfg | yolov3.weights | coco.names |
YOLOv3-tiny | 416x416 | yolov3-tiny.cfg | yolov3.weights | coco.names |
YOLOv2 | 608x608 | yolov2.cfg | yolov2.weights | coco.names |
YOLOv2-tiny | 416x416 | yolov2-tiny.cfg | yolov2-tiny.weights | voc.names |
yolo9000 | 448x448 | darknet9000.cfg | yolo9000.weights | 9k.names |
To marking bounded boxes of objects in images for training neural network you can use VoTT
Check graphic device usage "%PROGRAMFILES%\NVIDIA Corporation\NVSMI\nvidia-smi.exe"
.
├── Alturos.Yolo.dll # C# yolo wrapper
├── x64/
│ ├── yolo_cpp_dll_cpu.dll # yolo runtime for cpu
│ ├── yolo_cpp_dll_gpu.dll # yolo runtime fot gpu
│ ├── cudnn64_7.dll # required by yolo_cpp_dll_gpu (optional only required for gpu processig)
│ ├── opencv_world340.dll # required by yolo_cpp_dll_xxx (process image as byte data detect_mat)
│ ├── pthreadGC2.dll # required by yolo_cpp_dll_xxx (POSIX Threads)
│ ├── pthreadVC2.dll # required by yolo_cpp_dll_xxx (POSIX Threads)
│ ├── msvcr100.dll # required by pthread (POSIX Threads)