Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Arc corr and glob check fix #437

Open
wants to merge 38 commits into
base: master
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from all commits
Commits
Show all changes
38 commits
Select commit Hold shift + click to select a range
68f6d8b
Added arc-by-arc corrections, and new .json lists
fscarlier Mar 6, 2024
284544e
fixed passing of opt for include_ips
fscarlier Mar 6, 2024
49354ae
minor import removal
fscarlier Mar 8, 2024
2cf3400
small fixes, renaming of parameters, +fake arcbyarc test data
fscarlier Mar 8, 2024
0eead2b
version bump and flag as store_true
JoschD Mar 8, 2024
d908b34
get bpms per plane
JoschD Mar 8, 2024
0b34c5f
fixed check corrections
JoschD Mar 8, 2024
2488022
lines in correction test style
JoschD Mar 8, 2024
e861a08
plot test marker style
JoschD Mar 8, 2024
9406ea8
knob extractor hack
JoschD Mar 9, 2024
f977613
remove kq5.l2b1 from MQM_INJ_2024
JoschD Mar 13, 2024
a7cf7e9
removed kq4.r6b2
JoschD Mar 13, 2024
8c762a1
removed kq4.r6b2 also from TOP
JoschD Mar 13, 2024
5e0257a
changed optics measurements style
JoschD Mar 13, 2024
0904fae
Print exciter BPM in error message
JoschD Mar 18, 2024
b56bd02
Merge branch 'master' into arc_corr_and_glob_check_fix
JoschD Mar 18, 2024
aecbb3c
fix lhc
JoschD Mar 18, 2024
23e41b3
added NaN check
JoschD May 6, 2024
3020b80
made warning
JoschD May 6, 2024
5cfe24c
added generic accelerator
JoschD May 6, 2024
099c42d
skip coupling for generic and sps
JoschD May 6, 2024
7d4c1ad
Merge branch 'master' into arc_corr_and_glob_check_fix
JoschD Jun 5, 2024
51c2400
fixed changelog bugs
JoschD Jun 5, 2024
67570e0
Merge branch 'master' into arc_corr_and_glob_check_fix
JoschD Oct 28, 2024
5ac386f
nan in output
JoschD Oct 28, 2024
ee71a70
CHANGELOG
JoschD Oct 28, 2024
4d18da9
bad bpm message
JoschD Oct 28, 2024
c97a9ff
fix no data in plane
JoschD Oct 28, 2024
bba82c7
changelog
JoschD Oct 28, 2024
33b67ce
Merge 'main' into 'arc_corr_and_glob_check_fix'
jgray-19 Nov 12, 2024
a34f920
Merege 'master' into 'arc_corr_and_glob_check_fix'
jgray-19 Nov 15, 2024
3beb940
Merge branch 'master' into arc_corr_and_glob_check_fix
JoschD Dec 3, 2024
39592f4
delete old kmod files, add test, update responses
JoschD Dec 3, 2024
30d814a
added responses
JoschD Dec 3, 2024
296fca6
Merge branch 'sbs_like_jaime' into sbs_merged_from_master
JoschD Dec 4, 2024
28dd058
trying to test arc-by-arc
JoschD Dec 5, 2024
c04aeb2
New arc by arc tests based on diff
fscarlier Dec 18, 2024
2bdf561
Merge branch 'master' into arc_corr_and_glob_check_fix
JoschD Jan 20, 2025
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
14 changes: 14 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
@@ -1,5 +1,19 @@
# OMC3 Changelog

#### IN PROGRESS - v0.21.0 - _jdilly_, _fscarlier_, _fesoubel_

- Fixed:
- Plot Optics Measurements: Added extra mpl style for clearer plots
- LHC exciter BPM not found: Tells you which BPMs were searched for
- Plot Spectrum: Correct error handling for Single-Plane BPMs

- Added:
- Global Correction: Total phase correction arc-by-arc
- Global Correction: New MQM-knob categories `MQM_INJ_2024` and `MQM_TOP_2024` without Q4 and Q4-6
- Script to copy KMod results into optics directory
- Cleaning: Filter BPMs with NaNs
- Cleaning: Log bad BPMs with reasons before raising errors.

#### 2025-01-06 - v0.20.4 - _fsoubelet_

- Fixed:
Expand Down
15 changes: 11 additions & 4 deletions omc3/check_corrections.py
Original file line number Diff line number Diff line change
Expand Up @@ -246,7 +246,7 @@
from omc3.correction.response_twiss import PLANES
from omc3.definitions.optics import (
OpticsMeasurement, ColumnsAndLabels,
FILE_COLUMN_MAPPING, RDT_COLUMN_MAPPING, TUNE_COLUMN
FILE_COLUMN_MAPPING, RDT_COLUMN_MAPPING, TUNE_COLUMN, TOTAL_PHASE_NAME, MU_COLUMN
)
from omc3.global_correction import _get_default_values, CORRECTION_DEFAULTS, OPTICS_PARAMS_CHOICES
from omc3.model import manager
Expand Down Expand Up @@ -481,8 +481,10 @@ def _create_model_and_write_diff_to_measurements(
diff_columns = (
list(OPTICS_PARAMS_CHOICES[:-4]) +
[col for col in corr_model_elements.columns if col.startswith("F1")] +
list(PLANES)
list(PLANES) +
['MUX', 'MUY']
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This could also probably be from constants

)

diff_models = diff_twiss_parameters(corr_model_elements, accel_inst.model, parameters=diff_columns)
LOG.debug("Differences to nominal model calculated.")

Expand Down Expand Up @@ -520,12 +522,17 @@ def _create_model_and_write_diff_to_measurements(
LOG.debug(f"Checking correction for {attribute}")
plane = filename[-1].upper()
cols = colmap.set_plane(plane)
if filename[:-1] == TOTAL_PHASE_NAME:
model_cols = MU_COLUMN.set_plane(plane)
else:
model_cols = cols

_create_check_columns(
measurement=measurement,
output_measurement=output_measurement,
diff_models=diff_models,
colmap_meas=cols,
colmap_model=cols,
colmap_model=model_cols,
attribute=attribute,
rms_mask=rms_mask,
)
Expand Down Expand Up @@ -577,7 +584,7 @@ def _create_check_columns(measurement: OpticsMeasurement, output_measurement: Op
diff = diff_models.loc[df.index, colmap_model.delta_column]

df[colmap_meas.diff_correction_column] = diff
if colmap_meas.column == PHASE:
if colmap_meas.column[:-1] == PHASE:
df[colmap_meas.expected_column] = pd.to_numeric(ang_diff(df[colmap_meas.delta_column], diff)) # assumes period 1
df.headers[colmap_meas.delta_rms_header] = circular_rms(df[colmap_meas.delta_column], period=1)
df.headers[colmap_meas.expected_rms_header] = circular_rms(df[colmap_meas.expected_column], period=1)
Expand Down
99 changes: 99 additions & 0 deletions omc3/correction/arc_by_arc.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,99 @@
import numpy as np
import pandas as pd


def identify_closest_arc_bpm_to_ip(ip, side, beam, bpms):
indices = range(1,15)
for ii in indices:
bpm = f'BPM.{ii}{side}{ip}.B{beam}'
if bpm in bpms:
return bpm
# TODO: else!


def get_left_right_pair(arc, beam, bpms):
left_of_arc = identify_closest_arc_bpm_to_ip(int(arc[0]), 'R', beam, bpms)
right_of_arc = identify_closest_arc_bpm_to_ip(int(arc[1]), 'L', beam, bpms)
return [left_of_arc, right_of_arc]


def get_arc_by_arc_bpm_pairs(meas_dict, opt, plane):
bpms = meas_dict[f'PHASE{plane}'].index
beam = bpms[0][-1]
bpm_pairs = {}
bpm_pairs_with_ips = {}

arcs_to_cycle = ['81', '12', '23', '34', '45', '56', '67', '78']

for lhc_arc in arcs_to_cycle:
bpm_pairs[lhc_arc] = get_left_right_pair(lhc_arc, beam, bpms)

if opt.include_ips_in_arc_by_arc == 'left':
bpm_pairs_with_ips['81'] = [bpm_pairs['78'][1], bpm_pairs['81'][1]]
bpm_pairs_with_ips['12'] = [bpm_pairs['81'][1], bpm_pairs['12'][1]]
bpm_pairs_with_ips['23'] = [bpm_pairs['12'][1], bpm_pairs['23'][1]]
bpm_pairs_with_ips['34'] = [bpm_pairs['23'][1], bpm_pairs['34'][1]]
bpm_pairs_with_ips['45'] = [bpm_pairs['34'][1], bpm_pairs['45'][1]]
bpm_pairs_with_ips['56'] = [bpm_pairs['45'][1], bpm_pairs['56'][1]]
bpm_pairs_with_ips['67'] = [bpm_pairs['56'][1], bpm_pairs['67'][1]]
bpm_pairs_with_ips['78'] = [bpm_pairs['67'][1], bpm_pairs['78'][1]]
bpm_pairs = bpm_pairs_with_ips
elif opt.include_ips_in_arc_by_arc == 'right':
bpm_pairs_with_ips['81'] = [bpm_pairs['78'][0], bpm_pairs['81'][0]]
bpm_pairs_with_ips['12'] = [bpm_pairs['81'][0], bpm_pairs['12'][0]]
bpm_pairs_with_ips['23'] = [bpm_pairs['12'][0], bpm_pairs['23'][0]]
bpm_pairs_with_ips['34'] = [bpm_pairs['23'][0], bpm_pairs['34'][0]]
bpm_pairs_with_ips['45'] = [bpm_pairs['34'][0], bpm_pairs['45'][0]]
bpm_pairs_with_ips['56'] = [bpm_pairs['45'][0], bpm_pairs['56'][0]]
bpm_pairs_with_ips['67'] = [bpm_pairs['56'][0], bpm_pairs['67'][0]]
bpm_pairs_with_ips['78'] = [bpm_pairs['67'][0], bpm_pairs['78'][0]]
bpm_pairs = bpm_pairs_with_ips

return bpm_pairs


def circular_sum_phase(phase_df, tune, bpm_pair, key):
idx_0 = phase_df[key].index.get_loc(bpm_pair[0])
idx_1 = phase_df[key].index.get_loc(bpm_pair[1])
if idx_0 > idx_1:
inverted_result = sum(phase_df[key][bpm_pair[1]:bpm_pair[0]])
result = tune - inverted_result
else:
result = sum(phase_df[key][bpm_pair[0]:bpm_pair[1]])
return result


def circular_sum_phase_error(phase_df, bpm_pair):
idx_0 = phase_df['ERROR'].index.get_loc(bpm_pair[0])
idx_1 = phase_df['ERROR'].index.get_loc(bpm_pair[1])
if idx_0 > idx_1:
selection = pd.concat([phase_df['ERROR'].loc[:bpm_pair[1]], phase_df['ERROR'].loc[bpm_pair[0]:]])
result = np.sqrt(np.sum(selection**2))
else:
result = np.sqrt(np.sum(phase_df['ERROR'][bpm_pair[0]:bpm_pair[1]]**2))
return result

def get_arc_phases(bpm_pairs, meas_dict, tune, plane):
arc_meas = []
for arc, bpm_pair in bpm_pairs.items():
results = {}
results['NAME'] = bpm_pair[0]
results['NAME2'] = bpm_pair[1]
results['WEIGHT'] = meas_dict[f'PHASE{plane}'].loc[bpm_pair[0], 'WEIGHT']
results['VALUE'] = circular_sum_phase(meas_dict[f'PHASE{plane}'], tune, bpm_pair, 'VALUE')
results['MODEL'] = circular_sum_phase(meas_dict[f'PHASE{plane}'], tune, bpm_pair, 'MODEL')
results['ERROR'] = circular_sum_phase_error(meas_dict[f'PHASE{plane}'], bpm_pair)
results['DIFF'] = results['VALUE'] - results['MODEL']
arc_meas.append(results)

meas_dict[f'PHASE{plane}'] = pd.DataFrame(arc_meas).set_index('NAME')

return meas_dict


def reduce_to_arc_extremities(meas_dict, nominal_model, opt):
bpm_pairs_x = get_arc_by_arc_bpm_pairs(meas_dict, opt, "X")
bpm_pairs_y = get_arc_by_arc_bpm_pairs(meas_dict, opt, "Y")
meas_dict = get_arc_phases(bpm_pairs_x, meas_dict, nominal_model.headers['Q1'], 'X')
meas_dict = get_arc_phases(bpm_pairs_y, meas_dict, nominal_model.headers['Q2'], 'Y')
return meas_dict
5 changes: 4 additions & 1 deletion omc3/correction/handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -18,7 +18,7 @@
from sklearn.linear_model import OrthogonalMatchingPursuit

import omc3.madx_wrapper as madx_wrapper
from omc3.correction import filters, model_appenders, response_twiss, response_madx
from omc3.correction import filters, model_appenders, response_twiss, response_madx, arc_by_arc as abba
from omc3.correction.constants import DIFF, ERROR, VALUE, WEIGHT, ORBIT_DPP
from omc3.correction.model_appenders import add_coupling_to_model
from omc3.correction.response_io import read_fullresponse
Expand Down Expand Up @@ -69,6 +69,9 @@ def correct(accel_inst: Accelerator, opt: DotDict) -> None:
meas_dict = filters.filter_measurement(optics_params, meas_dict, nominal_model, opt)
meas_dict = model_appenders.add_differences_to_model_to_measurements(nominal_model, meas_dict)

if opt.arc_by_arc_phase and accel_inst.NAME == 'lhc':
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Do we have to hardcode here?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I would go with Lhc.NAME but yeah, hardcoded to filter LHC

meas_dict = abba.reduce_to_arc_extremities(meas_dict, nominal_model, opt)

resp_dict = filters.filter_response_index(resp_dict, meas_dict, optics_params)
resp_matrix = _join_responses(resp_dict, optics_params, vars_list)
delta = tfs.TfsDataFrame(0., index=vars_list, columns=[DELTA])
Expand Down
12 changes: 9 additions & 3 deletions omc3/correction/model_appenders.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,10 +67,16 @@ def _get_model_generic(model: pd.DataFrame, meas: pd.DataFrame, key: str) -> pd.


def _get_model_phases(model: pd.DataFrame, meas: pd.DataFrame, key: str) -> pd.DataFrame:
model_column = f"{PHASE_ADV}{key[-1]}"
plane = key[-1]
tunes = {'X':model.headers['Q1'],
'Y':model.headers['Q2'],
}
model_column = f"{PHASE_ADV}{plane}"
with logging_tools.log_pandas_settings_with_copy(LOG.debug):
meas[MODEL] = (model.loc[meas["NAME2"].to_numpy(), model_column].to_numpy() -
model.loc[meas.index.to_numpy(), model_column].to_numpy())
model_phases_advances = (model.loc[meas["NAME2"].to_numpy(), model_column].to_numpy() -
model.loc[meas.index.to_numpy(), model_column].to_numpy())
model_phases_advances[model_phases_advances < 0] += tunes[plane]
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

This is probably a settingswithcopywarning, this PR could be the opportunity to use .loc and future proof a bit.

meas[MODEL] = model_phases_advances
meas[DIFF] = df_diff(meas, VALUE, MODEL)
return meas

Expand Down
3 changes: 1 addition & 2 deletions omc3/correction/model_diff.py
Original file line number Diff line number Diff line change
Expand Up @@ -20,7 +20,7 @@
def diff_twiss_parameters(model_a: tfs.TfsDataFrame,
model_b: tfs.TfsDataFrame,
parameters: Sequence[str] = None) -> tfs.TfsDataFrame:
"""Create a TfsDataFrame containing of the given parameters between
"""Create a TfsDataFrame containing the difference of the given parameters between
model_a and model_b."""
# preparation ---
if parameters is None:
Expand Down Expand Up @@ -54,7 +54,6 @@ def _get_mapping():
return defaultdict(
lambda: _diff,
{
PHASE_ADV: _phase_advance_diff,
PHASE: _phase_advance_diff,
BETA: _beta_beating,
NORM_DISPERSION: _normalized_dispersion_diff,
Expand Down
1 change: 1 addition & 0 deletions omc3/definitions/optics.py
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,7 @@ def delta_label(self):
NORM_DISPERSION_COLUMN = ColumnsAndLabels(NORM_DISPERSION, _label=ylabels['norm_dispersion'], _text_label='normalized dispersion')
PHASE_COLUMN = ColumnsAndLabels(PHASE, _label=ylabels['phase'], _text_label='phase')
TOTAL_PHASE_COLUMN = ColumnsAndLabels(PHASE, _label=ylabels['phase'], _text_label='total phase')
MU_COLUMN = ColumnsAndLabels(PHASE_ADV, _label=ylabels['phasetot'], _text_label='total phase')
fsoubelet marked this conversation as resolved.
Show resolved Hide resolved
PHASE_ADVANCE_COLUMN = ColumnsAndLabels(f'{PHASE_ADV}{{0}}{MDL}', _label=r'Phase Advance [$2 \pi$]', _text_label='phase advance')
S_COLUMN = ColumnsAndLabels(S, _label='Location [m]', _text_label='longitudinal location', needs_plane=False)

Expand Down
12 changes: 10 additions & 2 deletions omc3/global_correction.py
Original file line number Diff line number Diff line change
Expand Up @@ -175,7 +175,7 @@
NORM_DISPERSION, PHASE, TUNE)
from omc3.model import manager
from omc3.utils import logging_tools
from omc3.utils.iotools import PathOrStr, save_config
from omc3.utils.iotools import PathOrStr, OptionalStr, save_config

if TYPE_CHECKING:
from generic_parser import DotDict
Expand All @@ -190,14 +190,14 @@
f"{F1001}R", f"{F1001}I", f"{F1010}R", f"{F1010}I")

CORRECTION_DEFAULTS = {
"optics_file": None,
"output_filename": "changeparameters_iter",
"svd_cut": 0.01,
"optics_params": OPTICS_PARAMS_CHOICES[:6],
"variable_categories": ["MQM", "MQT", "MQTL", "MQY"],
"beta_filename": "beta_phase_",
"method": "pinv",
"iterations": 4,
"include_ips_in_arc_by_arc": None,
}


Expand Down Expand Up @@ -276,6 +276,14 @@ def correction_params():
params.add_parameter(name="update_response",
action="store_true",
help="Update the (analytical) response per iteration.", )
params.add_parameter(name="arc_by_arc_phase",
action="store_true",
help="Set to perform arc-by-arc total phase correction.", )
params.add_parameter(name="include_ips_in_arc_by_arc",
type=str,
choices=("left", "right"),
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Are the choices correct here since the default is None?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think "None" is always a choice when not required. I implemented this somewhen.

default=CORRECTION_DEFAULTS["include_ips_in_arc_by_arc"],
help="If not specified only takes pure arcs. Otherwise it includes IPs left or right of arcs.", )
return params


Expand Down
71 changes: 58 additions & 13 deletions omc3/harpy/clean.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,14 +54,20 @@ def _cut_cleaning(harpy_input, bpm_data, model):
bpm_flatness = _detect_flat_bpms(bpm_data, harpy_input.peak_to_peak)
bpm_spikes = _detect_bpms_with_spikes(bpm_data, harpy_input.max_peak)
exact_zeros = _detect_bpms_with_exact_zeros(bpm_data, harpy_input.keep_exact_zeros)
all_bad_bpms = _index_union(known_bad_bpms, bpm_flatness, bpm_spikes, exact_zeros)
bpm_nans = _detect_bpms_with_nans(bpm_data)
all_bad_bpms = _index_union(known_bad_bpms, bpm_flatness, bpm_spikes, exact_zeros, bpm_nans)
original_bpms = bpm_data.index

bpm_data = bpm_data.loc[bpm_data.index.difference(all_bad_bpms, sort=False)]
bad_bpms_with_reasons = _get_bad_bpms_summary(
harpy_input, known_bad_bpms, bpm_flatness, bpm_spikes, exact_zeros
harpy_input,
known=known_bad_bpms,
flat=bpm_flatness,
spike=bpm_spikes,
zero=exact_zeros,
nan=bpm_nans,
)
_report_clean_stats(original_bpms.size, bpm_data.index.size)
_report_clean_stats(original_bpms.size, bpm_data.index.size, bad_bpms_with_reasons)
bpm_data = _fix_polarity(harpy_input.wrong_polarity_bpms, bpm_data)
if model is not None and harpy_input.first_bpm is not None:
bpm_data = _resync_bpms(harpy_input, bpm_data, model)
Expand Down Expand Up @@ -110,42 +116,81 @@ def _detect_bpms_with_spikes(bpm_data, max_peak_cut):
too_low = bpm_data[bpm_data.min(axis=1) < -max_peak_cut].index
bpm_spikes = too_high.union(too_low)
if bpm_spikes.size:
LOGGER.debug(f"Spikes > {max_peak_cut} detected. BPMs removed: {bpm_spikes.size}")
LOGGER.debug(
f"Spikes > {max_peak_cut} detected. "
f"{bpm_spikes.size} BPMs removed: {', '.join(bpm_spikes)}"
)
return bpm_spikes


def _detect_bpms_with_nans(bpm_data) -> pd.Index:
"""Detects BPMs with NaN values."""
nan_bpms = bpm_data[bpm_data.isna().any(axis=1)].index
if nan_bpms.size:
LOGGER.warning(
f"NaN BPMs detected. "
f"{nan_bpms.size} BPMs removed: {', '.join(nan_bpms)}"
)
return nan_bpms


def _detect_bpms_with_exact_zeros(bpm_data, keep_exact_zeros):
"""Detects BPMs with exact zeros due to OP workaround."""
if keep_exact_zeros:
LOGGER.debug("Skipped exact zero check")
return pd.Index([])
exact_zeros = bpm_data[~np.all(bpm_data, axis=1)].index
if exact_zeros.size:
LOGGER.debug(f"Exact zeros detected. BPMs removed: {exact_zeros.size}")
LOGGER.debug(
f"Exact zeros detected. "
f"{exact_zeros.size} BPMs removed: {', '.join(exact_zeros)} "
)
return exact_zeros


def _get_bad_bpms_summary(harpy_input, known_bad_bpms, bpm_flatness, bpm_spikes, exact_zeros):
return ([f"{bpm_name} Known bad BPM" for bpm_name in known_bad_bpms] +
[f"{bpm_name} Flat BPM, the difference between min/max is smaller than "
f"{harpy_input.peak_to_peak}" for bpm_name in bpm_flatness] +
[f"{bpm_name} Spiky BPM, found spike higher than "
f"{harpy_input.max_peak}" for bpm_name in bpm_spikes] +
[f"{bpm_name} Found an exact zero" for bpm_name in exact_zeros])
def _get_bad_bpms_summary(harpy_input, **kwargs):
human_readable = {
"known": "Known bad BPM",
"flat": f"Flat BPM, the difference between min/max is smaller than {harpy_input.peak_to_peak}",
"spike": f"Spiky BPM, found spike higher than {harpy_input.max_peak}",
"zero": "Found an exact zero",
"nan": "Found NaN",
}

# Quick check that catches coding errors/typos:
unknown_kwargs = [kwarg for kwarg in kwargs if kwarg not in human_readable.keys()]
if len(unknown_kwargs):
raise NameError(f"Unknown reason(s) for Bad-BPMs: {unknown_kwargs}")

return [
f"{bpm_name} {msg}" for reason, msg in human_readable.items() for bpm_name in kwargs[reason]
]


def _report_clean_stats(n_total_bpms, n_good_bpms):
def _report_clean_stats(n_total_bpms, n_good_bpms, bad_bpms_with_reasons):
LOGGER.debug("Filtering done:")

# As it not written out yet, provide more info in case of raising errors:
bad_bpms_message = "Bad BPMs found:\n"
bad_bpms_message += "\n".join(bad_bpms_with_reasons)

# If all BPMs have been bad ---
if n_good_bpms == 0:
LOGGER.info(bad_bpms_message)
raise ValueError("Total Number of BPMs after filtering is zero.")

# The good, the bad and the ugly BPMs ---
n_bad_bpms = n_total_bpms - n_good_bpms
LOGGER.debug(f"(Statistics for file reading) Total BPMs: {n_total_bpms}, "
f"Good BPMs: {n_good_bpms} ({(100 * n_good_bpms / n_total_bpms):2.2f}%), "
f"Bad BPMs: {n_bad_bpms} ({(100 * n_bad_bpms / n_total_bpms):2.2f}%)")
if (n_good_bpms / n_total_bpms) < 0.5:
LOGGER.info(bad_bpms_message)
raise ValueError("More than half of BPMs are bad. "
"This could be because a bunch not present in the machine has been "
"selected or because of a problem with the phasing of the BPMs.")

LOGGER.debug(bad_bpms_message)


def _index_union(*indices):
Expand Down
Loading
Loading