-
-
Notifications
You must be signed in to change notification settings - Fork 615
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Initial commit * Add tests * Fix two typos * Fix Mypy * Fix engine mypy issue * Fix docstring * Fix another problem in docstring --------- Co-authored-by: vfdev <vfdev.5@gmail.com>
- Loading branch information
1 parent
65352ad
commit 4c93282
Showing
5 changed files
with
177 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,54 @@ | ||
from typing import Any, Callable, Dict, Sequence | ||
|
||
import torch | ||
|
||
from ignite.metrics import Metric | ||
|
||
|
||
class MetricGroup(Metric): | ||
""" | ||
A class for grouping metrics so that user could manage them easier. | ||
Args: | ||
metrics: a dictionary of names to metric instances. | ||
output_transform: a callable that is used to transform the | ||
:class:`~ignite.engine.engine.Engine`'s ``process_function``'s output into the | ||
form expected by the metric. `output_transform` of each metric in the group is also | ||
called upon its update. | ||
Examples: | ||
We construct a group of metrics, attach them to the engine at once and retrieve their result. | ||
.. code-block:: python | ||
import torch | ||
metric_group = MetricGroup({'acc': Accuracy(), 'precision': Precision(), 'loss': Loss(nn.NLLLoss())}) | ||
metric_group.attach(default_evaluator, "eval_metrics") | ||
y_true = torch.tensor([1, 0, 1, 1, 0, 1]) | ||
y_pred = torch.tensor([1, 0, 1, 0, 1, 1]) | ||
state = default_evaluator.run([[y_pred, y_true]]) | ||
# Metrics individually available in `state.metrics` | ||
state.metrics["acc"], state.metrics["precision"], state.metrics["loss"] | ||
# And also altogether | ||
state.metrics["eval_metrics"] | ||
""" | ||
|
||
_state_dict_all_req_keys = ("metrics",) | ||
|
||
def __init__(self, metrics: Dict[str, Metric], output_transform: Callable = lambda x: x): | ||
self.metrics = metrics | ||
super(MetricGroup, self).__init__(output_transform=output_transform) | ||
|
||
def reset(self) -> None: | ||
for m in self.metrics.values(): | ||
m.reset() | ||
|
||
def update(self, output: Sequence[torch.Tensor]) -> None: | ||
for m in self.metrics.values(): | ||
m.update(m._output_transform(output)) | ||
|
||
def compute(self) -> Dict[str, Any]: | ||
return {k: m.compute() for k, m in self.metrics.items()} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import pytest | ||
import torch | ||
|
||
from ignite import distributed as idist | ||
from ignite.engine import Engine | ||
from ignite.metrics import Accuracy, MetricGroup, Precision | ||
|
||
torch.manual_seed(41) | ||
|
||
|
||
def test_update(): | ||
precision = Precision() | ||
accuracy = Accuracy() | ||
|
||
group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) | ||
|
||
y_pred = torch.randint(0, 2, (100,)) | ||
y = torch.randint(0, 2, (100,)) | ||
|
||
precision.update((y_pred, y)) | ||
accuracy.update((y_pred, y)) | ||
group.update((y_pred, y)) | ||
|
||
assert precision.state_dict() == group.metrics["precision"].state_dict() | ||
assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() | ||
|
||
|
||
def test_output_transform(): | ||
def drop_first(output): | ||
y_pred, y = output | ||
return (y_pred[1:], y[1:]) | ||
|
||
precision = Precision(output_transform=drop_first) | ||
accuracy = Accuracy(output_transform=drop_first) | ||
|
||
group = MetricGroup( | ||
{"precision": Precision(output_transform=drop_first), "accuracy": Accuracy(output_transform=drop_first)} | ||
) | ||
|
||
y_pred = torch.randint(0, 2, (100,)) | ||
y = torch.randint(0, 2, (100,)) | ||
|
||
precision.update(drop_first(drop_first((y_pred, y)))) | ||
accuracy.update(drop_first(drop_first((y_pred, y)))) | ||
group.update(drop_first((y_pred, y))) | ||
|
||
assert precision.state_dict() == group.metrics["precision"].state_dict() | ||
assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() | ||
|
||
|
||
def test_compute(): | ||
precision = Precision() | ||
accuracy = Accuracy() | ||
|
||
group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) | ||
|
||
for _ in range(3): | ||
y_pred = torch.randint(0, 2, (100,)) | ||
y = torch.randint(0, 2, (100,)) | ||
|
||
precision.update((y_pred, y)) | ||
accuracy.update((y_pred, y)) | ||
group.update((y_pred, y)) | ||
|
||
assert group.compute() == {"precision": precision.compute(), "accuracy": accuracy.compute()} | ||
|
||
precision.reset() | ||
accuracy.reset() | ||
group.reset() | ||
|
||
assert precision.state_dict() == group.metrics["precision"].state_dict() | ||
assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() | ||
|
||
|
||
@pytest.mark.usefixtures("distributed") | ||
class TestDistributed: | ||
def test_integration(self): | ||
rank = idist.get_rank() | ||
torch.manual_seed(12 + rank) | ||
|
||
n_epochs = 3 | ||
n_iters = 5 | ||
batch_size = 10 | ||
device = idist.device() | ||
|
||
y_true = torch.randint(0, 2, size=(n_iters * batch_size,)).to(device) | ||
y_pred = torch.randint(0, 2, (n_iters * batch_size,)).to(device) | ||
|
||
def update(_, i): | ||
return ( | ||
y_pred[i * batch_size : (i + 1) * batch_size], | ||
y_true[i * batch_size : (i + 1) * batch_size], | ||
) | ||
|
||
engine = Engine(update) | ||
|
||
precision = Precision() | ||
precision.attach(engine, "precision") | ||
|
||
accuracy = Accuracy() | ||
accuracy.attach(engine, "accuracy") | ||
|
||
group = MetricGroup({"eval_metrics.accuracy": Accuracy(), "eval_metrics.precision": Precision()}) | ||
group.attach(engine, "eval_metrics") | ||
|
||
data = list(range(n_iters)) | ||
engine.run(data=data, max_epochs=n_epochs) | ||
|
||
assert "eval_metrics" in engine.state.metrics | ||
assert "eval_metrics.accuracy" in engine.state.metrics | ||
assert "eval_metrics.precision" in engine.state.metrics | ||
|
||
assert engine.state.metrics["eval_metrics"] == { | ||
"eval_metrics.accuracy": engine.state.metrics["accuracy"], | ||
"eval_metrics.precision": engine.state.metrics["precision"], | ||
} | ||
assert engine.state.metrics["eval_metrics.accuracy"] == engine.state.metrics["accuracy"] | ||
assert engine.state.metrics["eval_metrics.precision"] == engine.state.metrics["precision"] |