-
-
Notifications
You must be signed in to change notification settings - Fork 615
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
36cfdc6
commit bdd0fe4
Showing
4 changed files
with
153 additions
and
3 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,118 @@ | ||
import pytest | ||
import torch | ||
|
||
from ignite import distributed as idist | ||
from ignite.engine import Engine | ||
from ignite.metrics import Accuracy, MetricGroup, Precision | ||
|
||
torch.manual_seed(41) | ||
|
||
|
||
def test_update(): | ||
precision = Precision() | ||
accuracy = Accuracy() | ||
|
||
group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) | ||
|
||
y_pred = torch.randint(0, 2, (100,)) | ||
y = torch.randint(0, 2, (100,)) | ||
|
||
precision.update((y_pred, y)) | ||
accuracy.update((y_pred, y)) | ||
group.update((y_pred, y)) | ||
|
||
assert precision.state_dict() == group.metrics["precision"].state_dict() | ||
assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() | ||
|
||
|
||
def test_output_transform(): | ||
def drop_first(output): | ||
y_pred, y = output | ||
return (y_pred[1:], y[1:]) | ||
|
||
precision = Precision(output_transform=drop_first) | ||
accuracy = Accuracy(output_transform=drop_first) | ||
|
||
group = MetricGroup( | ||
{"precision": Precision(output_transform=drop_first), "accuracy": Accuracy(output_transform=drop_first)} | ||
) | ||
|
||
y_pred = torch.randint(0, 2, (100,)) | ||
y = torch.randint(0, 2, (100,)) | ||
|
||
precision.update(drop_first(drop_first((y_pred, y)))) | ||
accuracy.update(drop_first(drop_first((y_pred, y)))) | ||
group.update(drop_first((y_pred, y))) | ||
|
||
assert precision.state_dict() == group.metrics["precision"].state_dict() | ||
assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() | ||
|
||
|
||
def test_compute(): | ||
precision = Precision() | ||
accuracy = Accuracy() | ||
|
||
group = MetricGroup({"precision": Precision(), "accuracy": Accuracy()}) | ||
|
||
for _ in range(3): | ||
y_pred = torch.randint(0, 2, (100,)) | ||
y = torch.randint(0, 2, (100,)) | ||
|
||
precision.update((y_pred, y)) | ||
accuracy.update((y_pred, y)) | ||
group.update((y_pred, y)) | ||
|
||
assert group.compute() == {"precision": precision.compute(), "accuracy": accuracy.compute()} | ||
|
||
precision.reset() | ||
accuracy.reset() | ||
group.reset() | ||
|
||
assert precision.state_dict() == group.metrics["precision"].state_dict() | ||
assert accuracy.state_dict() == group.metrics["accuracy"].state_dict() | ||
|
||
|
||
@pytest.mark.usefixtures("distributed") | ||
class TestDistributed: | ||
def test_integration(self): | ||
rank = idist.get_rank() | ||
torch.manual_seed(12 + rank) | ||
|
||
n_epochs = 3 | ||
n_iters = 5 | ||
batch_size = 10 | ||
device = idist.device() | ||
|
||
y_true = torch.randint(0, 2, size=(n_iters * batch_size,)).to(device) | ||
y_pred = torch.randint(0, 2, (n_iters * batch_size,)).to(device) | ||
|
||
def update(_, i): | ||
return ( | ||
y_pred[i * batch_size : (i + 1) * batch_size], | ||
y_true[i * batch_size : (i + 1) * batch_size], | ||
) | ||
|
||
engine = Engine(update) | ||
|
||
precision = Precision() | ||
precision.attach(engine, "precision") | ||
|
||
accuracy = Accuracy() | ||
accuracy.attach(engine, "accuracy") | ||
|
||
group = MetricGroup({"eval_metrics.accuracy": Accuracy(), "eval_metrics.precision": Precision()}) | ||
group.attach(engine, "eval_metrics") | ||
|
||
data = list(range(n_iters)) | ||
engine.run(data=data, max_epochs=n_epochs) | ||
|
||
assert "eval_metrics" in engine.state.metrics | ||
assert "eval_metrics.accuracy" in engine.state.metrics | ||
assert "eval_metrics.precision" in engine.state.metrics | ||
|
||
assert engine.state.metrics["eval_metrics"] == { | ||
"eval_metrics.accuracy": engine.state.metrics["accuracy"], | ||
"eval_metrics.precision": engine.state.metrics["precision"], | ||
} | ||
assert engine.state.metrics["eval_metrics.accuracy"] == engine.state.metrics["accuracy"] | ||
assert engine.state.metrics["eval_metrics.precision"] == engine.state.metrics["precision"] |