Releases
1.31.0
What's New
ONNX
Added support for custom ops in QuantSim, CLE, AdaRound and AMP.
Added support for Quant Analyzer.
Keras
Added support for unrolled quantized LSTM with only Quantsim in PTQ mode.
Fix for ReLU Encoding min going past 0 for QAT.
Fixes Input Quantizers for TFOpLambda Layers (kwargs)
Fixes logic for placing input quantizers
Documentation
Packages
aimet_torch-torch_gpu_1.31.0-cp38-cp38-linux_x86_64.whl
PyTorch 1.13 GPU package with Python 3.8 and CUDA 11.x - Recommended for use with PyTorch models
aimet_torch-torch_cpu_1.31.0-cp38-cp38-linux_x86_64.whl
PyTorch 1.13 CPU package with Python 3.8 - If installing on a machine without CUDA
aimet_torch-torch_cpu_pt19_1.31.0-cp38-cp38-linux_x86_64.whl
PyTorch 1.9 CPU package with Python 3.8 - If installing on a machine without CUDA
aimet_tensorflow-tf_gpu_1.31.0-cp38-cp38-linux_x86_64.whl
TensorFlow 2.10 GPU package with Python 3.8 - Recommended for use with TensorFlow models
aimet_tensorflow-tf_cpu_1.31.0-cp38-cp38-linux_x86_64.whl
TensorFlow 2.10 CPU package with Python 3.8 - If installing on a machine without CUDA
aimet_onnx-onnx_gpu_1.31.0-cp38-cp38-linux_x86_64.whl
ONNX 1.11.0 GPU package with Python 3.8 - Recommended for use with ONNX models
aimet_onnx-onnx_cpu_1.31.0-cp38-cp38-linux_x86_64.whl
ONNX 1.11.0 CPU package with Python 3.8 - If installing on a machine without CUDA
You can’t perform that action at this time.