Skip to content

raghuramshankar/quant-portfolios

Repository files navigation

Quant Portfolios

Tasks/Tools:

  • Selects list of tickers to model and construct a portfolio using factor based models (TBD)
  • Fits Multivariate Student's t distribution to a list of stocks using fitHeavyTail
  • Constructs a risk parity/budgeting portfolio using riskParity.py
  • Constructs sparse portfolio using sparseIndexTracking
  • Backtests returns of constructed portfolios

Requirements:

  • Python
  • rpy2
  • R compiler
  • requirements.txt

Risk Parity Portfolio:

risk-parity

Portfolio FRXE.L (%) UC90.L (%) VUSA.L (%)
Risk Parity 56.6 24.5 18.9
Risk Budget (60%, 20%, 20%) 47.4 20.0 32.6
Equal Weight 33 33 33

Sparse Portfolio:

sparse

Ticker Weight (%)
VMID.L 30.6
VUKE.L 24.1
V3AM.L 45.3

About

Construct portfolios informed by quantitative analysis

Resources

Stars

Watchers

Forks

Languages