-
Notifications
You must be signed in to change notification settings - Fork 58
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add support for nvCOMP batch API (#249)
See #248 for more details. Authors: - Alexey Kamenev (https://github.com/Alexey-Kamenev) Approvers: - Mads R. B. Kristensen (https://github.com/madsbk) URL: #249
- Loading branch information
1 parent
1ffe8b1
commit 9e004ce
Showing
7 changed files
with
1,842 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,357 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 1, | ||
"id": "b543ae63", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import json\n", | ||
"\n", | ||
"import numcodecs\n", | ||
"\n", | ||
"import numpy as np\n", | ||
"\n", | ||
"import zarr\n", | ||
"\n", | ||
"from IPython.display import display\n", | ||
"\n", | ||
"np.set_printoptions(precision=4, suppress=True)" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"id": "1a8e55d5", | ||
"metadata": {}, | ||
"source": [ | ||
"### Basic usage\n", | ||
"\n", | ||
"Get nvCOMP codec from numcodecs registry:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 2, | ||
"id": "75524650", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"NvCompBatchCodec(algorithm='lz4', options={})" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"NVCOMP_CODEC_ID = \"nvcomp_batch\"\n", | ||
"\n", | ||
"# Currently supported algorithms.\n", | ||
"LZ4_ALGO = \"LZ4\"\n", | ||
"GDEFLATE_ALGO = \"Gdeflate\"\n", | ||
"SNAPPY_ALGO = \"snappy\"\n", | ||
"ZSTD_ALGO = \"zstd\"\n", | ||
"\n", | ||
"codec = numcodecs.registry.get_codec(dict(id=NVCOMP_CODEC_ID, algorithm=LZ4_ALGO))\n", | ||
"# To pass algorithm-specific options, use options parameter:\n", | ||
"# codec = numcodecs.registry.get_codec(dict(id=NVCOMP_CODEC_ID, algo=LZ4_ALGO, options={\"data_type\": 1}))\n", | ||
"\n", | ||
"display(codec)" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"id": "46641ccb", | ||
"metadata": {}, | ||
"source": [ | ||
"Create data:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 3, | ||
"id": "12a4fffd", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"array([[ 1.6243, -0.6118, -0.5282, ..., 0.0436, -0.62 , 0.698 ],\n", | ||
" [-0.4471, 1.2245, 0.4035, ..., 0.4203, 0.811 , 1.0444],\n", | ||
" [-0.4009, 0.824 , -0.5623, ..., 0.7848, -0.9554, 0.5859],\n", | ||
" ...,\n", | ||
" [ 1.3797, 0.1387, 1.2255, ..., 1.8051, 0.3722, 0.1253],\n", | ||
" [ 0.7348, -0.7115, -0.1248, ..., -1.9533, -0.7684, -0.5345],\n", | ||
" [ 0.2183, -0.8654, 0.8886, ..., -1.0141, -0.0627, -1.4379]],\n", | ||
" dtype=float32)" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table class=\"zarr-info\"><tbody><tr><th style=\"text-align: left\">Type</th><td style=\"text-align: left\">zarr.core.Array</td></tr><tr><th style=\"text-align: left\">Data type</th><td style=\"text-align: left\">float32</td></tr><tr><th style=\"text-align: left\">Shape</th><td style=\"text-align: left\">(100, 100)</td></tr><tr><th style=\"text-align: left\">Chunk shape</th><td style=\"text-align: left\">(10, 10)</td></tr><tr><th style=\"text-align: left\">Order</th><td style=\"text-align: left\">C</td></tr><tr><th style=\"text-align: left\">Read-only</th><td style=\"text-align: left\">False</td></tr><tr><th style=\"text-align: left\">Compressor</th><td style=\"text-align: left\">NvCompBatchCodec(algorithm='lz4', options={})</td></tr><tr><th style=\"text-align: left\">Store type</th><td style=\"text-align: left\">zarr.storage.KVStore</td></tr><tr><th style=\"text-align: left\">No. bytes</th><td style=\"text-align: left\">40000 (39.1K)</td></tr><tr><th style=\"text-align: left\">No. bytes stored</th><td style=\"text-align: left\">41006 (40.0K)</td></tr><tr><th style=\"text-align: left\">Storage ratio</th><td style=\"text-align: left\">1.0</td></tr><tr><th style=\"text-align: left\">Chunks initialized</th><td style=\"text-align: left\">100/100</td></tr></tbody></table>" | ||
], | ||
"text/plain": [ | ||
"Type : zarr.core.Array\n", | ||
"Data type : float32\n", | ||
"Shape : (100, 100)\n", | ||
"Chunk shape : (10, 10)\n", | ||
"Order : C\n", | ||
"Read-only : False\n", | ||
"Compressor : NvCompBatchCodec(algorithm='lz4', options={})\n", | ||
"Store type : zarr.storage.KVStore\n", | ||
"No. bytes : 40000 (39.1K)\n", | ||
"No. bytes stored : 41006 (40.0K)\n", | ||
"Storage ratio : 1.0\n", | ||
"Chunks initialized : 100/100" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"shape = (100, 100)\n", | ||
"chunks = (10, 10)\n", | ||
"\n", | ||
"np.random.seed(1)\n", | ||
"\n", | ||
"x = zarr.array(np.random.randn(*shape).astype(np.float32), chunks=chunks, compressor=codec)\n", | ||
"display(x[:])\n", | ||
"display(x.info)" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"id": "c15cbdff", | ||
"metadata": {}, | ||
"source": [ | ||
"Store and load back the data:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 4, | ||
"id": "730cde85", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'chunks': [10, 10],\n", | ||
" 'compressor': {'algorithm': 'lz4', 'id': 'nvcomp_batch', 'options': {}},\n", | ||
" 'dtype': '<f4',\n", | ||
" 'fill_value': 0.0,\n", | ||
" 'filters': None,\n", | ||
" 'order': 'C',\n", | ||
" 'shape': [100, 100],\n", | ||
" 'zarr_format': 2}" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# Use simple dictionary store, see zarr documentation for other options.\n", | ||
"zarr_store = {}\n", | ||
"\n", | ||
"zarr.save_array(zarr_store, x, compressor=codec)\n", | ||
"\n", | ||
"# Check stored metadata.\n", | ||
"meta_info = json.loads(zarr_store[\".zarray\"])\n", | ||
"display(meta_info)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 5, | ||
"id": "11338a99", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table class=\"zarr-info\"><tbody><tr><th style=\"text-align: left\">Type</th><td style=\"text-align: left\">zarr.core.Array</td></tr><tr><th style=\"text-align: left\">Data type</th><td style=\"text-align: left\">float32</td></tr><tr><th style=\"text-align: left\">Shape</th><td style=\"text-align: left\">(100, 100)</td></tr><tr><th style=\"text-align: left\">Chunk shape</th><td style=\"text-align: left\">(10, 10)</td></tr><tr><th style=\"text-align: left\">Order</th><td style=\"text-align: left\">C</td></tr><tr><th style=\"text-align: left\">Read-only</th><td style=\"text-align: left\">False</td></tr><tr><th style=\"text-align: left\">Compressor</th><td style=\"text-align: left\">NvCompBatchCodec(algorithm='lz4', options={})</td></tr><tr><th style=\"text-align: left\">Store type</th><td style=\"text-align: left\">zarr.storage.KVStore</td></tr><tr><th style=\"text-align: left\">No. bytes</th><td style=\"text-align: left\">40000 (39.1K)</td></tr><tr><th style=\"text-align: left\">No. bytes stored</th><td style=\"text-align: left\">41006 (40.0K)</td></tr><tr><th style=\"text-align: left\">Storage ratio</th><td style=\"text-align: left\">1.0</td></tr><tr><th style=\"text-align: left\">Chunks initialized</th><td style=\"text-align: left\">100/100</td></tr></tbody></table>" | ||
], | ||
"text/plain": [ | ||
"Type : zarr.core.Array\n", | ||
"Data type : float32\n", | ||
"Shape : (100, 100)\n", | ||
"Chunk shape : (10, 10)\n", | ||
"Order : C\n", | ||
"Read-only : False\n", | ||
"Compressor : NvCompBatchCodec(algorithm='lz4', options={})\n", | ||
"Store type : zarr.storage.KVStore\n", | ||
"No. bytes : 40000 (39.1K)\n", | ||
"No. bytes stored : 41006 (40.0K)\n", | ||
"Storage ratio : 1.0\n", | ||
"Chunks initialized : 100/100" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"y = zarr.open_array(zarr_store)\n", | ||
"display(y.info)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 6, | ||
"id": "5b6cc2ca", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Test the roundtrip.\n", | ||
"np.testing.assert_equal(y[:], x[:])" | ||
] | ||
}, | ||
{ | ||
"attachments": {}, | ||
"cell_type": "markdown", | ||
"id": "1a8eea79", | ||
"metadata": {}, | ||
"source": [ | ||
"### CPU compression / GPU decompression\n", | ||
"\n", | ||
"Some algorithms, such as LZ4, can be used interchangeably on CPU and GPU. For example, the data might be created using CPU LZ4 codec and then decompressed using GPU version of LZ4 codec." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": 7, | ||
"id": "87d25b76", | ||
"metadata": {}, | ||
"outputs": [ | ||
{ | ||
"data": { | ||
"text/plain": [ | ||
"{'chunks': [10, 10],\n", | ||
" 'compressor': {'acceleration': 1, 'id': 'lz4'},\n", | ||
" 'dtype': '<f4',\n", | ||
" 'fill_value': 0.0,\n", | ||
" 'filters': None,\n", | ||
" 'order': 'C',\n", | ||
" 'shape': [100, 100],\n", | ||
" 'zarr_format': 2}" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table class=\"zarr-info\"><tbody><tr><th style=\"text-align: left\">Type</th><td style=\"text-align: left\">zarr.core.Array</td></tr><tr><th style=\"text-align: left\">Data type</th><td style=\"text-align: left\">float32</td></tr><tr><th style=\"text-align: left\">Shape</th><td style=\"text-align: left\">(100, 100)</td></tr><tr><th style=\"text-align: left\">Chunk shape</th><td style=\"text-align: left\">(10, 10)</td></tr><tr><th style=\"text-align: left\">Order</th><td style=\"text-align: left\">C</td></tr><tr><th style=\"text-align: left\">Read-only</th><td style=\"text-align: left\">False</td></tr><tr><th style=\"text-align: left\">Compressor</th><td style=\"text-align: left\">LZ4(acceleration=1)</td></tr><tr><th style=\"text-align: left\">Store type</th><td style=\"text-align: left\">zarr.storage.KVStore</td></tr><tr><th style=\"text-align: left\">No. bytes</th><td style=\"text-align: left\">40000 (39.1K)</td></tr><tr><th style=\"text-align: left\">No. bytes stored</th><td style=\"text-align: left\">40973 (40.0K)</td></tr><tr><th style=\"text-align: left\">Storage ratio</th><td style=\"text-align: left\">1.0</td></tr><tr><th style=\"text-align: left\">Chunks initialized</th><td style=\"text-align: left\">100/100</td></tr></tbody></table>" | ||
], | ||
"text/plain": [ | ||
"Type : zarr.core.Array\n", | ||
"Data type : float32\n", | ||
"Shape : (100, 100)\n", | ||
"Chunk shape : (10, 10)\n", | ||
"Order : C\n", | ||
"Read-only : False\n", | ||
"Compressor : LZ4(acceleration=1)\n", | ||
"Store type : zarr.storage.KVStore\n", | ||
"No. bytes : 40000 (39.1K)\n", | ||
"No. bytes stored : 40973 (40.0K)\n", | ||
"Storage ratio : 1.0\n", | ||
"Chunks initialized : 100/100" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
}, | ||
{ | ||
"data": { | ||
"text/html": [ | ||
"<table class=\"zarr-info\"><tbody><tr><th style=\"text-align: left\">Type</th><td style=\"text-align: left\">zarr.core.Array</td></tr><tr><th style=\"text-align: left\">Data type</th><td style=\"text-align: left\">float32</td></tr><tr><th style=\"text-align: left\">Shape</th><td style=\"text-align: left\">(100, 100)</td></tr><tr><th style=\"text-align: left\">Chunk shape</th><td style=\"text-align: left\">(10, 10)</td></tr><tr><th style=\"text-align: left\">Order</th><td style=\"text-align: left\">C</td></tr><tr><th style=\"text-align: left\">Read-only</th><td style=\"text-align: left\">False</td></tr><tr><th style=\"text-align: left\">Compressor</th><td style=\"text-align: left\">NvCompBatchCodec(algorithm='lz4', options={})</td></tr><tr><th style=\"text-align: left\">Store type</th><td style=\"text-align: left\">zarr.storage.KVStore</td></tr><tr><th style=\"text-align: left\">No. bytes</th><td style=\"text-align: left\">40000 (39.1K)</td></tr><tr><th style=\"text-align: left\">No. bytes stored</th><td style=\"text-align: left\">40883 (39.9K)</td></tr><tr><th style=\"text-align: left\">Storage ratio</th><td style=\"text-align: left\">1.0</td></tr><tr><th style=\"text-align: left\">Chunks initialized</th><td style=\"text-align: left\">100/100</td></tr></tbody></table>" | ||
], | ||
"text/plain": [ | ||
"Type : zarr.core.Array\n", | ||
"Data type : float32\n", | ||
"Shape : (100, 100)\n", | ||
"Chunk shape : (10, 10)\n", | ||
"Order : C\n", | ||
"Read-only : False\n", | ||
"Compressor : NvCompBatchCodec(algorithm='lz4', options={})\n", | ||
"Store type : zarr.storage.KVStore\n", | ||
"No. bytes : 40000 (39.1K)\n", | ||
"No. bytes stored : 40883 (39.9K)\n", | ||
"Storage ratio : 1.0\n", | ||
"Chunks initialized : 100/100" | ||
] | ||
}, | ||
"metadata": {}, | ||
"output_type": "display_data" | ||
} | ||
], | ||
"source": [ | ||
"# Get default (CPU) implementation of LZ4 codec.\n", | ||
"cpu_codec = numcodecs.registry.get_codec({\"id\": \"lz4\"})\n", | ||
"\n", | ||
"x = zarr.array(np.random.randn(*shape).astype(np.float32), chunks=chunks, compressor=cpu_codec)\n", | ||
"# Define a simple, dictionary-based store. In real scenarios this can be a filesystem or some other persistent store.\n", | ||
"store = {}\n", | ||
"zarr.save_array(store, x, compressor=cpu_codec)\n", | ||
"\n", | ||
"# Check that the data was written by the expected codec.\n", | ||
"meta = json.loads(store[\".zarray\"])\n", | ||
"display(meta)\n", | ||
"assert meta[\"compressor\"][\"id\"] == \"lz4\"\n", | ||
"\n", | ||
"# Change codec to GPU/nvCOMP-based.\n", | ||
"meta[\"compressor\"] = {\"id\": NVCOMP_CODEC_ID, \"algorithm\": LZ4_ALGO}\n", | ||
"store[\".zarray\"] = json.dumps(meta).encode()\n", | ||
"\n", | ||
"y = zarr.open_array(store, compressor=codec)\n", | ||
"\n", | ||
"display(x.info)\n", | ||
"display(y.info)\n", | ||
"\n", | ||
"np.testing.assert_equal(x[:], y[:])\n" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "b9294992", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3", | ||
"version": "3.8.10" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.