Skip to content

rasmus11423/my_mlops_repo

 
 

Repository files navigation

my_mlops_project

TODO

Project structure

The directory structure of the project looks like this:

├── .github/                  # Github actions and dependabot
│   ├── dependabot.yaml
│   └── workflows/
│       └── tests.yaml
├── configs/                  # Configuration files
├── data/                     # Data directory
│   ├── processed
│   └── raw
├── dockerfiles/              # Dockerfiles
│   ├── api.Dockerfile
│   └── train.Dockerfile
├── docs/                     # Documentation
│   ├── mkdocs.yml
│   └── source/
│       └── index.md
├── models/                   # Trained models
├── notebooks/                # Jupyter notebooks
├── reports/                  # Reports
│   └── figures/
├── src/                      # Source code
│   ├── project_name/
│   │   ├── __init__.py
│   │   ├── api.py
│   │   ├── data.py
│   │   ├── evaluate.py
│   │   ├── models.py
│   │   ├── train.py
│   │   └── visualize.py
└── tests/                    # Tests
│   ├── __init__.py
│   ├── test_api.py
│   ├── test_data.py
│   └── test_model.py
├── .gitignore
├── .pre-commit-config.yaml
├── LICENSE
├── pyproject.toml            # Python project file
├── README.md                 # Project README
├── requirements.txt          # Project requirements
├── requirements_dev.txt      # Development requirements
└── tasks.py                  # Project tasks

Available Tasks

The following tasks can be executed using the invoke command:

  • create_environment: Create a new conda environment for the project.
  • requirements: Install project requirements.
  • dev_requirements: Install development requirements.
  • preprocess_data: Preprocess raw data and save it to the processed directory.
  • train: Train the model.
  • evaluate: Evaluate the trained model.
  • visualize: Visualize model predictions.
  • test: Run tests and generate a coverage report.
  • docker_build: Build Docker images for training and API.
  • build_docs: Build the project documentation.
  • serve_docs: Serve the project documentation locally.

To run a task, use the following command:

invoke <task_name>

For example, to train the model, use:

invoke train

Created using mlops_template, a cookiecutter template for getting started with Machine Learning Operations (MLOps).

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 89.9%
  • Dockerfile 10.1%