LightGBM-Ray is a distributed backend for LightGBM, built on top of distributed computing framework Ray.
LightGBM-Ray
- enables multi-node and multi-GPU training
- integrates seamlessly with distributed hyperparameter optimization library Ray Tune
- comes with fault tolerance handling mechanisms, and
- supports distributed dataframes and distributed data loading
All releases are tested on large clusters and workloads.
This package is based on XGBoost-Ray. As of now, XGBoost-Ray is a dependency for LightGBM-Ray.
You can install the latest LightGBM-Ray release from PIP:
pip install "lightgbm_ray"
If you'd like to install the latest master, use this command instead:
pip install "git+https://github.com/ray-project/lightgbm_ray.git#egg=lightgbm_ray"
LightGBM-Ray provides a drop-in replacement for LightGBM's train
function. To pass data, a RayDMatrix
object is required, common
with XGBoost-Ray. You can also use a scikit-learn
interface - see next section.
Just as in original lgbm.train()
function, the
training parameters
are passed as the params
dictionary.
Ray-specific distributed training parameters are configured with a
lightgbm_ray.RayParams
object. For instance, you can set
the num_actors
property to specify how many distributed actors
you would like to use.
Here is a simplified example (which requires sklearn
):
Training:
from lightgbm_ray import RayDMatrix, RayParams, train
from sklearn.datasets import load_breast_cancer
train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = RayDMatrix(train_x, train_y)
evals_result = {}
bst = train(
{
"objective": "binary",
"metric": ["binary_logloss", "binary_error"],
},
train_set,
evals_result=evals_result,
valid_sets=[train_set],
valid_names=["train"],
verbose_eval=False,
ray_params=RayParams(num_actors=2, cpus_per_actor=2))
bst.booster_.save_model("model.lgbm")
print("Final training error: {:.4f}".format(
evals_result["train"]["binary_error"][-1]))
Prediction:
from lightgbm_ray import RayDMatrix, RayParams, predict
from sklearn.datasets import load_breast_cancer
import lightgbm as lgbm
data, labels = load_breast_cancer(return_X_y=True)
dpred = RayDMatrix(data, labels)
bst = lgbm.Booster(model_file="model.lgbm")
pred_ray = predict(bst, dpred, ray_params=RayParams(num_actors=2))
print(pred_ray)
LightGBM-Ray also features a scikit-learn API fully mirroring pure LightGBM scikit-learn API, providing a completely drop-in replacement. The following estimators are available:
RayLGBMClassifier
RayLGBMRegressor
Example usage of RayLGBMClassifier
:
from lightgbm_ray import RayLGBMClassifier, RayParams
from sklearn.datasets import load_breast_cancer
from sklearn.model_selection import train_test_split
seed = 42
X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(
X, y, train_size=0.25, random_state=42)
clf = RayLGBMClassifier(
n_jobs=2, # In LightGBM-Ray, n_jobs sets the number of actors
random_state=seed)
# scikit-learn API will automatically convert the data
# to RayDMatrix format as needed.
# You can also pass X as a RayDMatrix, in which case
# y will be ignored.
clf.fit(X_train, y_train)
pred_ray = clf.predict(X_test)
print(pred_ray)
pred_proba_ray = clf.predict_proba(X_test)
print(pred_proba_ray)
# It is also possible to pass a RayParams object
# to fit/predict/predict_proba methods - will override
# n_jobs set during initialization
clf.fit(X_train, y_train, ray_params=RayParams(num_actors=2))
pred_ray = clf.predict(X_test, ray_params=RayParams(num_actors=2))
print(pred_ray)
Things to keep in mind:
n_jobs
parameter controls the number of actors spawned. You can pass aRayParams
object to thefit
/predict
/predict_proba
methods as theray_params
argument for greater control over resource allocation. Doing so will override the value ofn_jobs
with the value ofray_params.num_actors
attribute. For more information, refer to the Resources section below.- By default
n_jobs
is set to1
, which means the training will not be distributed. Make sure to either setn_jobs
to a higher value or pass aRayParams
object as outlined above in order to take advantage of LightGBM-Ray's functionality. - After calling
fit
, additional evaluation results (e.g. training time, number of rows, callback results) will be available underadditional_results_
attribute. eval_
arguments are supported, but early stopping is not.- LightGBM-Ray's scikit-learn API is based on LightGBM 3.2.1. While we try to support older LightGBM versions, please note that this library is only fully tested and supported for LightGBM >= 3.2.1.
For more information on the scikit-learn API, refer to the LightGBM documentation.
Data is passed to LightGBM-Ray via a RayDMatrix
object.
The RayDMatrix
lazy loads data and stores it sharded in the
Ray object store. The Ray LightGBM actors then access these
shards to run their training on.
A RayDMatrix
support various data and file types, like
Pandas DataFrames, Numpy Arrays, CSV files and Parquet files.
Example loading multiple parquet files:
import glob
from lightgbm_ray import RayDMatrix, RayFileType
# We can also pass a list of files
path = list(sorted(glob.glob("/data/nyc-taxi/*/*/*.parquet")))
# This argument will be passed to `pd.read_parquet()`
columns = [
"passenger_count",
"trip_distance", "pickup_longitude", "pickup_latitude",
"dropoff_longitude", "dropoff_latitude",
"fare_amount", "extra", "mta_tax", "tip_amount",
"tolls_amount", "total_amount"
]
dtrain = RayDMatrix(
path,
label="passenger_count", # Will select this column as the label
columns=columns,
# ignore=["total_amount"], # Optional list of columns to ignore
filetype=RayFileType.PARQUET)
LightGBM-Ray integrates with Ray Tune to provide distributed hyperparameter tuning for your
distributed LightGBM models. You can run multiple LightGBM-Ray training runs in parallel, each with a different
hyperparameter configuration, and each training run parallelized by itself. All you have to do is move your training
code to a function, and pass the function to tune.run
. Internally, train
will detect if tune
is being used and will
automatically report results to tune.
Example using LightGBM-Ray with Ray Tune:
from lightgbm_ray import RayDMatrix, RayParams, train
from sklearn.datasets import load_breast_cancer
num_actors = 2
num_cpus_per_actor = 2
ray_params = RayParams(
num_actors=num_actors, cpus_per_actor=num_cpus_per_actor)
def train_model(config):
train_x, train_y = load_breast_cancer(return_X_y=True)
train_set = RayDMatrix(train_x, train_y)
evals_result = {}
bst = train(
params=config,
dtrain=train_set,
evals_result=evals_result,
valid_sets=[train_set],
valid_names=["train"],
verbose_eval=False,
ray_params=ray_params)
bst.booster_.save_model("model.lgbm")
from ray import tune
# Specify the hyperparameter search space.
config = {
"objective": "binary",
"metric": ["binary_logloss", "binary_error"],
"eta": tune.loguniform(1e-4, 1e-1),
"subsample": tune.uniform(0.5, 1.0),
"max_depth": tune.randint(1, 9)
}
# Make sure to use the `get_tune_resources` method to set the `resources_per_trial`
analysis = tune.run(
train_model,
config=config,
metric="train-binary_error",
mode="min",
num_samples=4,
resources_per_trial=ray_params.get_tune_resources())
print("Best hyperparameters", analysis.best_config)
Also see examples/simple_tune.py for another example.
LightGBM-Ray leverages the stateful Ray actor model to enable fault tolerant training. Currently, only non-elastic training is supported.
When an actor or node dies, LightGBM-Ray will retain the state of the remaining actors. In non-elastic training, the failed actors will be replaced as soon as resources are available again. Only these actors will reload their parts of the data. Training will resume once all actors are ready for training again.
You can configure this mode in the RayParams
:
from lightgbm_ray import RayParams
ray_params = RayParams(
max_actor_restarts=2, # How often are actors allowed to fail, Default = 0
)
By default, LightGBM-Ray tries to determine the number of CPUs available and distributes them evenly across actors.
In the case of very large clusters or clusters with many different
machine sizes, it makes sense to limit the number of CPUs per actor
by setting the cpus_per_actor
argument. Consider always
setting this explicitly.
The number of LightGBM actors always has to be set manually with
the num_actors
argument.
By default, LightGBM-Ray tries to determine the number of CPUs available and distributes them evenly across actors.
It is important to note that distributed LightGBM needs at least
two CPUs per actor to function efficiently (without blocking).
Therefore, by default, at least two CPUs will be assigned to each actor,
and an exception will be raised if an actor has less than two CPUs.
It is possible to override this check by setting the
allow_less_than_two_cpus
argument to True
, though it is not
recommended, as it will negatively impact training performance.
In the case of very large clusters or clusters with many different
machine sizes, it makes sense to limit the number of CPUs per actor
by setting the cpus_per_actor
argument. Consider always
setting this explicitly.
The number of LightGBM actors always has to be set manually with
the num_actors
argument.
LightGBM-Ray enables multi GPU training. The LightGBM core backend
will automatically handle communication.
All you have to do is to start one actor per GPU and set LightGBM's
device_type
to a GPU-compatible option, eg. gpu
(see LightGBM
documentation for more details.)
For instance, if you have 2 machines with 4 GPUs each, you will want
to start 8 remote actors, and set gpus_per_actor=1
. There is usually
no benefit in allocating less (e.g. 0.5) or more than one GPU per actor.
You should divide the CPUs evenly across actors per machine, so if your machines have 16 CPUs in addition to the 4 GPUs, each actor should have 4 CPUs to use.
from lightgbm_ray import RayParams
ray_params = RayParams(
num_actors=8,
gpus_per_actor=1,
cpus_per_actor=4, # Divide evenly across actors per machine
)
This depends on your workload and your cluster setup. Generally there is no inherent benefit of running more than one remote actor per node for CPU-only training. This is because LightGBM core can already leverage multiple CPUs via threading.
However, there are some cases when you should consider starting more than one actor per node:
- For multi GPU training, each GPU should have a separate remote actor. Thus, if your machine has 24 CPUs and 4 GPUs, you will want to start 4 remote actors with 6 CPUs and 1 GPU each
- In a heterogeneous cluster, you might want to find the greatest common divisor for the number of CPUs. E.g. for a cluster with three nodes of 4, 8, and 12 CPUs, respectively, you should set the number of actors to 6 and the CPUs per actor to 4.
LightGBM-Ray can leverage both centralized and distributed data loading.
In centralized data loading, the data is partitioned by the head node and stored in the object store. Each remote actor then retrieves their partitions by querying the Ray object store. Centralized loading is used when you pass centralized in-memory dataframes, such as Pandas dataframes or Numpy arrays, or when you pass a single source file, such as a single CSV or Parquet file.
from lightgbm_ray import RayDMatrix
# This will use centralized data loading, as only one source file is specified
# `label_col` is a column in the CSV, used as the target label
ray_params = RayDMatrix("./source_file.csv", label="label_col")
In distributed data loading, each remote actor loads their data directly from the source (e.g. local hard disk, NFS, HDFS, S3), without a central bottleneck. The data is still stored in the object store, but locally to each actor. This mode is used automatically when loading data from multiple CSV or Parquet files. Please note that we do not check or enforce partition sizes in this case - it is your job to make sure the data is evenly distributed across the source files.
from lightgbm_ray import RayDMatrix
# This will use distributed data loading, as four source files are specified
# Please note that you cannot schedule more than four actors in this case.
# `label_col` is a column in the Parquet files, used as the target label
ray_params = RayDMatrix([
"hdfs:///tmp/part1.parquet",
"hdfs:///tmp/part2.parquet",
"hdfs:///tmp/part3.parquet",
"hdfs:///tmp/part4.parquet",
], label="label_col")
Lastly, LightGBM-Ray supports distributed dataframe representations, such as Ray Datasets, Modin and Dask dataframes (used with Dask on Ray). Here, LightGBM-Ray will check on which nodes the distributed partitions are currently located, and will assign partitions to actors in order to minimize cross-node data transfer. Please note that we also assume here that partition sizes are uniform.
from lightgbm_ray import RayDMatrix
# This will try to allocate the existing Modin partitions
# to co-located Ray actors. If this is not possible, data will
# be transferred across nodes
ray_params = RayDMatrix(existing_modin_df)
The following data sources can be used with a RayDMatrix
object.
Type | Centralized loading | Distributed loading |
---|---|---|
Numpy array | Yes | No |
Pandas dataframe | Yes | No |
Single CSV | Yes | No |
Multi CSV | Yes | Yes |
Single Parquet | Yes | No |
Multi Parquet | Yes | Yes |
Ray Dataset | Yes | Yes |
Petastorm | Yes | Yes |
Dask dataframe | Yes | Yes |
Modin dataframe | Yes | Yes |
Details coming soon.
Best practices
In order to reduce peak memory usage, consider the following suggestions:
- Store data as
float32
or less. More precision is often not needed, and keeping data in a smaller format will help reduce peak memory usage for initial data loading. - Pass the
dtype
when loading data from CSV. Otherwise, floating point values will be loaded asnp.float64
per default, increasing peak memory usage by 33%.
LightGBM-Ray leverages Ray's Placement Group API (https://docs.ray.io/en/master/placement-group.html) to implement placement strategies for better fault tolerance.
By default, a SPREAD strategy is used for training, which attempts to spread all of the training workers
across the nodes in a cluster on a best-effort basis. This improves fault tolerance since it minimizes the
number of worker failures when a node goes down, but comes at a cost of increased inter-node communication
To disable this strategy, set the RXGB_USE_SPREAD_STRATEGY
environment variable to 0. If disabled, no
particular placement strategy will be used.
When LightGBM-Ray is used with Ray Tune for hyperparameter tuning, a PACK strategy is used. This strategy attempts to place all workers for each trial on the same node on a best-effort basis. This means that if a node goes down, it will be less likely to impact multiple trials.
When placement strategies are used, LightGBM-Ray will wait for 100 seconds for the required resources
to become available, and will fail if the required resources cannot be reserved and the cluster cannot autoscale
to increase the number of resources. You can change the RXGB_PLACEMENT_GROUP_TIMEOUT_S
environment variable to modify
how long this timeout should be.
For complete end to end examples, please have a look at the examples folder:
- Simple sklearn breastcancer dataset example (requires
sklearn
) - HIGGS classification example (download dataset (2.6 GB))
- HIGGS classification example with Parquet (uses the same dataset)
- Test data classification (uses a self-generated dataset)