Skip to content

Commit

Permalink
Add PretrainedEmbedding to support more usages of pretrained embeddings
Browse files Browse the repository at this point in the history
  • Loading branch information
xpai committed Oct 12, 2023
1 parent 93bae1d commit 177f7f1
Show file tree
Hide file tree
Showing 6 changed files with 114 additions and 57 deletions.
6 changes: 3 additions & 3 deletions benchmark/run_expid.py
Original file line number Diff line number Diff line change
Expand Up @@ -74,10 +74,10 @@
gc.collect()

logging.info('******** Test evaluation ********')
test_gen = H5DataLoader(feature_map, stage='test', **params).make_iterator()
test_result = {}
if test_gen:
test_result = model.evaluate(test_gen)
if params["test_data"]:
test_gen = H5DataLoader(feature_map, stage='test', **params).make_iterator()
test_result = model.evaluate(test_gen)

result_filename = Path(args['config']).name.replace(".yaml", "") + '.csv'
with open(result_filename, 'a+') as fw:
Expand Down
2 changes: 1 addition & 1 deletion fuxictr/pytorch/layers/embeddings/__init__.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,2 @@
from .feature_embedding import *
from .pretrained_embedding import *
69 changes: 20 additions & 49 deletions fuxictr/pytorch/layers/embeddings/feature_embedding.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,10 +17,10 @@

import torch
from torch import nn
import h5py
import os
import numpy as np
from collections import OrderedDict
from .pretrained_embedding import PretrainedEmbedding
from fuxictr.pytorch.torch_utils import get_initializer
from fuxictr.pytorch import layers

Expand Down Expand Up @@ -69,11 +69,11 @@ def __init__(self,
for feature, feature_spec in self._feature_map.features.items():
if self.is_required(feature):
if not (use_pretrain and use_sharing) and embedding_dim == 1:
feat_emb_dim = 1 # in case for LR
feat_dim = 1 # in case for LR
if feature_spec["type"] == "sequence":
self.feature_encoders[feature] = layers.MaskedSumPooling()
else:
feat_emb_dim = feature_spec.get("embedding_dim", embedding_dim)
feat_dim = feature_spec.get("embedding_dim", embedding_dim)
if feature_spec.get("feature_encoder", None):
self.feature_encoders[feature] = self.get_feature_encoder(feature_spec["feature_encoder"])

Expand All @@ -83,31 +83,24 @@ def __init__(self,
continue

if feature_spec["type"] == "numeric":
self.embedding_layers[feature] = nn.Linear(1, feat_emb_dim, bias=False)
elif feature_spec["type"] == "categorical":
padding_idx = feature_spec.get("padding_idx", None)
embedding_matrix = nn.Embedding(feature_spec["vocab_size"],
feat_emb_dim,
padding_idx=padding_idx)
if use_pretrain and "pretrained_emb" in feature_spec:
embedding_matrix = self.load_pretrained_embedding(embedding_matrix,
feature_map,
feature,
freeze=feature_spec["freeze_emb"],
padding_idx=padding_idx)
self.embedding_layers[feature] = embedding_matrix
elif feature_spec["type"] == "sequence":
padding_idx = feature_spec.get("padding_idx", None)
embedding_matrix = nn.Embedding(feature_spec["vocab_size"],
feat_emb_dim,
padding_idx=padding_idx)
self.embedding_layers[feature] = nn.Linear(1, feat_dim, bias=False)
elif feature_spec["type"] in ["categorical", "sequence"]:
if use_pretrain and "pretrained_emb" in feature_spec:
embedding_matrix = self.load_pretrained_embedding(embedding_matrix,
feature_map,
feature,
freeze=feature_spec["freeze_emb"],
padding_idx=padding_idx)
self.embedding_layers[feature] = embedding_matrix
pretrained_path = os.path.join(feature_map.data_dir,
feature_spec["pretrained_emb"])
pretrain_dim = feature_spec.get("pretrain_dim", feat_dim)
pretrain_usage = feature_spec.get("pretrain_usage", "init")
self.embedding_layers[feature] = PretrainedEmbedding(feature,
feature_spec,
pretrained_path,
feat_dim,
pretrain_dim,
pretrain_usage)
else:
padding_idx = feature_spec.get("padding_idx", None)
self.embedding_layers[feature] = nn.Embedding(feature_spec["vocab_size"],
feat_dim,
padding_idx=padding_idx)
self.reset_parameters()

def get_feature_encoder(self, encoder):
Expand Down Expand Up @@ -148,24 +141,6 @@ def is_required(self, feature):
else:
return True

def get_pretrained_embedding(self, pretrained_path, feature_name):
with h5py.File(pretrained_path, 'r') as hf:
embeddings = hf[feature_name][:]
return embeddings

def load_pretrained_embedding(self, embedding_matrix, feature_map, feature_name, freeze=False, padding_idx=None):
pretrained_path = os.path.join(feature_map.data_dir, feature_map.features[feature_name]["pretrained_emb"])
embeddings = self.get_pretrained_embedding(pretrained_path, feature_name)
if padding_idx is not None:
embeddings[padding_idx] = np.zeros(embeddings.shape[-1])
assert embeddings.shape[-1] == embedding_matrix.embedding_dim, \
"{}\'s embedding_dim is not correctly set to match its pretrained_emb shape".format(feature_name)
embeddings = torch.from_numpy(embeddings).float()
embedding_matrix.weight = torch.nn.Parameter(embeddings)
if freeze:
embedding_matrix.weight.requires_grad = False
return embedding_matrix

def dict2tensor(self, embedding_dict, feature_list=[], feature_source=[], feature_type=[], flatten_emb=False):
if type(feature_source) != list:
feature_source = [feature_source]
Expand Down Expand Up @@ -214,7 +189,3 @@ def forward(self, inputs, feature_source=[], feature_type=[]):
embeddings = self.feature_encoders[feature](embeddings)
feature_emb_dict[feature] = embeddings
return feature_emb_dict




86 changes: 86 additions & 0 deletions fuxictr/pytorch/layers/embeddings/pretrained_embedding.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
# =========================================================================
# Copyright (C) 2023. Huawei Technologies Co., Ltd. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# =========================================================================


import torch
from torch import nn
import h5py
import os
import numpy as np


class PretrainedEmbedding(nn.Module):
def __init__(self,
feature_name,
feature_spec,
pretrained_path,
embedding_dim,
pretrain_dim,
pretrain_usage="init"):
"""
Fusion pretrained embedding with ID embedding
:param: fusion_type: init/sum/concat
"""
super().__init__()
assert pretrain_usage in ["init", "sum", "concat"]
self.pretrain_usage = pretrain_usage
padding_idx = feature_spec.get("padding_idx", None)
embedding_matrix = nn.Embedding(feature_spec["vocab_size"],
pretrain_dim,
padding_idx=padding_idx)
self.pretrain_embedding = self.load_pretrained_embedding(embedding_matrix,
pretrained_path,
feature_name,
freeze=feature_spec["freeze_emb"],
padding_idx=padding_idx)
if pretrain_usage != "init":
self.id_embedding = nn.Embedding(feature_spec["vocab_size"],
embedding_dim,
padding_idx=padding_idx)
if pretrain_usage == "sum" and embedding_dim != pretrain_dim:
self.proj_W = nn.Linear(pretrain_dim, embedding_dim)
else:
self.proj_W = None

def get_pretrained_embedding(self, pretrained_path, feature_name):
with h5py.File(pretrained_path, 'r') as hf:
embeddings = hf[feature_name][:]
return embeddings

def load_pretrained_embedding(self, embedding_matrix, pretrained_path, feature_name, freeze=False, padding_idx=None):
embeddings = self.get_pretrained_embedding(pretrained_path, feature_name)
if padding_idx is not None:
embeddings[padding_idx] = np.zeros(embeddings.shape[-1])
assert embeddings.shape[-1] == embedding_matrix.embedding_dim, \
"{}\'s pretrain_dim is not correct.".format(feature_name)
embeddings = torch.from_numpy(embeddings).float()
embedding_matrix.weight = torch.nn.Parameter(embeddings)
if freeze:
embedding_matrix.weight.requires_grad = False
return embedding_matrix

def forward(self, inputs):
feature_emb = self.pretrain_embedding(inputs)
if self.pretrain_usage != "init":
id_emb = self.id_embedding(inputs)
if self.pretrain_usage == "sum":
if self.proj_W is not None:
feature_emb = self.proj_W(feature_emb) + id_emb
else:
feature_emb += id_emb
if self.pretrain_usage == "concat":
feature_emb = torch.cat([feature_emb, id_emb], dim=-1)
return feature_emb
2 changes: 1 addition & 1 deletion fuxictr/version.py
Original file line number Diff line number Diff line change
@@ -1 +1 @@
__version__="2.0.4"
__version__="2.1.0"
6 changes: 3 additions & 3 deletions setup.py
Original file line number Diff line number Diff line change
Expand Up @@ -5,9 +5,9 @@

setuptools.setup(
name="fuxictr",
version="2.0.4",
author="xue-pai",
author_email="xue-pai@users.noreply.github.com",
version="2.1.0",
author="fuxictr",
author_email="fuxictr@users.noreply.github.com",
description="A configurable, tunable, and reproducible library for CTR prediction",
long_description=long_description,
long_description_content_type="text/markdown",
Expand Down

0 comments on commit 177f7f1

Please sign in to comment.