Easily configure a CLI application using a (Pydantic) dataclass.
Pydargs instantiates a dataclass that is used as (configuration) input of your entrypoint from command line arguments.
For example, in example.py
:
from dataclasses import dataclass
from pydargs import parse
@dataclass
class Config:
number: int
some_string: str = "abc"
def main(config: Config) -> None:
"""Your main functionality"""
print(f"> Hello {config.number} + {config.some_string}")
if __name__ == "__main__":
config = parse(Config)
main(config)
Here the Config
dataclass serves as input (configuration) of the main
function. Pydargs facilitates
instantiating the config
instance, allowing the user to use command line arguments to set or override the
values of its fields:
$ python example.py --number 1
> Hello 1 abc
$ python example.py --number 2 --some-string def
> Hello 2 def
$ python example.py --help
usage: example.py [-h] --number NUMBER [--some-string SOME_STRING]
options:
-h, --help show this help message and exit
--number NUMBER
--some-string SOME_STRING
(default: abc)
This saves you from having to maintain boilerplate code such as
from argparse import ArgumentParser
from dataclasses import dataclass
@dataclass
class Config:
number: int
some_string: str = "abc"
def main(config: Config) -> None:
"""Your main functionality"""
print(f"> Hello {config.number} + {config.some_string}")
if __name__ == "__main__":
parser = ArgumentParser()
parser.add_argument("--number", type=int)
parser.add_argument("--some-string", dest="some_string", default="abc")
namespace = parser.parse_args()
config = Config(number=namespace["number"], some_string=namespace["some_string"])
main(config)
Aside from that, pydargs supports:
- a wide variety of field types,
- nested dataclasses,
- subparsers / commands,
- pydantic dataclasses to help you with validation.
Pydargs can be installed with your favourite package manager. For example:
pip install pydargs
It's possible to pass additional arguments to the underlying argparse.ArgumentParser
instance by providing them
as keyword arguments to the parse
function. For example:
config = parse(Config, prog="myprogram", allow_abbrev=False)
will disable abbreviations for long options and set the program name to myprogram
in help messages. For an extensive list of accepted arguments, see the argparse docs.
The dataclass can have fields of the base types: int
, float
, str
, bool
, as well as:
- Literals comprised of those types.
- Enums, although these are not recommended as they do not play nice in the help messages. Only the enum name is accepted as a valid input, not the value.
- Bytes, with an optional
encoding
metadata field:a_value: bytes = field(metadata=dict(encoding="ascii"))
, which defaults to utf-8. - Date and datetime, with an optional
date_format
metadata field:your_date: date = field(metadata=dict(date_format="%m-%d-%Y"))
. When not provided dates in ISO 8601 format are accepted. - Lists of those types, either denoted as e.g.
list[int]
orSequence[int]
. Multiple arguments to anumbers: list[int]
field can be provided as--numbers 1 2 3
. A list-field without a default will require at least a single value to be provided. If a default is provided, it will be completely replaced by any arguments, if provided. - Optional types, denoted as e.g.
typing.Optional[int]
orint | None
(for Python 3.10 and above). Any argument passed is assumed to be of the provided type and can never beNone
. - Unions of types, denoted as e.g.
typing.Union[int, str]
orint | str
. Each argument will be parsed into the first type that returns a valid result. Note that this means thatstr | int
will always result in a value of typestr
. - Any other type that can be instantiated from a string, such as
Path
. - Dataclasses that, in turn, contain fields of supported types. See Nested Dataclasses.
- A union of multiple dataclasses, that in turn contain fields of supported types, which will be parsed in Subparsers.
Pydargs can also consume values from a JSON- or YAML-formatted file. To enable
this, pass add_config_file_argument=True
to the parse
function, which will add a --config-file
command line argument. If provided, the values from this file will override the defaults
of the dataclass fields. Any command line arguments passed will override the
defaults provided in the file.
For example, with the following contents in defaults.json
:
{
"a": 1,
"b": "abc"
}
then running this code
from dataclasses import dataclass
from pydargs import parse
@dataclass
class Config:
a: int = 2
b: str = "def"
if __name__ == "__main__":
config = parse(Config, add_config_file_argument=True)
with the following arguments
entrypoint --config-file defaults.json --b xyz
would result in Config(a=1, b="xyz")
.
Note that:
- Only defaults can be overridden. Any dataclass fields without a default must always be provided on the command line.
- Any extra keys present inside the file but not matching a field in the dataclass will be ignored, and if any are present a warning will be raised.
- In order to load defaults from a YAML-formatted file, PyYAML has
to be installed. To install it with pydargs, run
pip install pydargs[pyyaml]
. - The parsed dataclass may not have a field named
config_file
. - The defaults provided in the file will not be type-casted by pydargs, and hence only JSON-native types are supported.
Additional options can be provided to the dataclass field metadata.
The following metadata fields are supported:
Set positional=True
to create a positional argument instead of an option.
from dataclasses import dataclass, field
@dataclass
class Config:
argument: str = field(metadata=dict(positional=True))
Set as_flags=True
for a boolean field:
from dataclasses import dataclass, field
@dataclass
class Config:
verbose: bool = field(default=False, metadata=dict(as_flags=True))
which would create the arguments --verbose
and --no-verbose
to
set the value of verbose
to True
or False
respectively, instead
of a single option that requires a value like --verbose True
.
Provide a custom type converter that parses the argument into the desired type. For example:
from dataclasses import dataclass, field
from json import loads
@dataclass
class Config:
list_of_numbers: list[int] = field(metadata=dict(parser=loads))
This would parse --list-of-numbers [1, 2, 3]
into the list [1, 2, 3]
. Note that the error message returned
when providing invalid input is lacking any details. Also, no validation is performed to verify that the returned
type matches the field type. In the above example, --list-of-numbers '{"a": "b"}'
would result in list_of_numbers
being the dictionary {"a": "b"}
without any kind of warning.
Provide a short option for a field, which can be used as an alternative to the long option. For example,
from dataclasses import dataclass, field
@dataclass
class Config:
a_field_with_a_long_name: int = field(metadata=dict(short_option="-a"))
would allow using -a 42
as an alternative to --a-field-with-a-long-name 42
.
Fields can be ignored by adding the ignore_arg
metadata field:
@dataclass
class Config:
number: int
ignored: str = field(metadata=dict(ignore_arg=True))
When indicated, this field is not added to the parser and cannot be overridden with an argument.
Fields not included in the __init__()
(i.e. with init=False
, see here ) will be ignored by pydargs and cannot be overridden with an argument.
@dataclass
class Config:
number: int
ignored: str = field(init=False)
This could be useful in combination with a __post_init__()
method to set the value of the field.
Provide a brief description of the field, used in the help messages generated by argparse.
For example, calling your_program -h
with the dataclass below,
from dataclasses import dataclass, field
@dataclass
class Config:
an_integer: int = field(metadata=dict(help="any integer you like"))
would result in a message like:
usage: your_program [-h] [--an-integer AN_INTEGER]
optional arguments:
-h, --help show this help message and exit
--an-integer AN_INTEGER any integer you like
Override the displayed name of an argument in the help messages generated by argparse, as documented here.
For example, with the following dataclass,
from dataclasses import dataclass, field
@dataclass
class Config:
an_integer: int = field(metadata=dict(metavar="INT"))
calling your_program -h
would result in a message like:
usage: your_program [-h] [--an-integer INT]
optional arguments:
-h, --help show this help message and exit
--an-integer INT
Dataclasses may be nested; the type of a dataclass field may be another dataclass type:
from dataclasses import dataclass
@dataclass
class Config:
field_a: int
field_b: str = "abc"
@dataclass
class Base:
config: Config
verbose: bool = False
Argument names of fields of the nested dataclass are prefixed with the field name of the nested dataclass in the base
dataclass. Calling pydargs.parse(Base, ["-h"])
will result in something like:
usage: your_program.py [-h] --config-field-a CONFIG_FIELD_A
[--config-field-b CONFIG_FIELD_B]
[--verbose VERBOSE]
options:
-h, --help show this help message and exit
--verbose VERBOSE (default: False)
config:
--config-field-a CONFIG_FIELD_A
--config-field-b CONFIG_FIELD_B
(default: abc)
Please be aware of the following:
- The default (factory) of fields with a dataclass type is ignored by pydargs, which may yield unexpected results.
E.g., in the example above,
config: Config = field(default_factory=lambda: Config(field_b="def"))
will not result in a default of "def" for field_b when parsed by pydargs. Instead, setfield_b: str = "def"
in the definition ofConfig
. If you must add a default, for example for instantiating your dataclass elsewhere, doconfig: Config = field(default_factory=Config)
, assuming that all fields inConfig
have a default. - Nested dataclasses can not be positional (although fields of the nested dataclass can be).
- Argument names must not collide. In the example above, the
Base
class should not contain a field namedconfig_field_a
. - When reading defaults from a file, the data inside the file may be nested like the dataclasses as well as flat with prefixes.
E.g.
{"config": {"field_b": "xyz"}
has the same effect as{"config_field_b": "xyz"}
. Pydargs will raise an exception in the case of collisions between keys in alternative formats.
Dataclasses can contain a field with a union-of-dataclasses type, e.g.:
from dataclasses import dataclass, field
from typing import Union
@dataclass
class Command1:
field_a: int
field_b: str = "abc"
@dataclass
class Command2:
field_c: str = field(metadata=dict(positional=True))
@dataclass
class Base:
command: Union[Command1, Command2]
verbose: bool = False
This will result in sub commands
which allow calling your entrypoint as entrypoint --verbose Command1 --field-a 12
.
Calling pydargs.parse(Base, ["-h"])
will result in something like:
usage: your_program.py [-h] [--verbose VERBOSE] {Command1,command1,Command2,command2} ...
options:
-h, --help show this help message and exit
--verbose VERBOSE (default: False)
action:
{Command1,command1,Command2,command2}
Note that:
- Also lower-case command names are accepted.
- Any dataclass can not contain more than one subcommand-field.
- Sub-commands can be nested and mixed with nested dataclasses.
- Any positional fields defined after a subcommand-field can not be parsed.
- Subparsers handle all arguments that come after the command; so all global arguments must come before the command.
In the above example this means that
entrypoint --verbose Command2 string
is valid butentrypoint Command2 string --verbose
is not.