Vis-DSS is Licensed under the GNU GENERAL PUBLIC LICENSE. See LICENSE for more details.
- Video Summarization
SimpleVideoSummarizer
(using Color Histogram features)DeepSimVideoSummarizer
using Features from a Deep Model and Similarity based functionsDeepCoverVideoSummarizer
using Features from a Deep Model and Coverage Based FunctionsEntitySimVideoSummarizer
using Entity Models and Features from a Deep Model and Similarity based functionsQuerySimVideoSummarizer
using Features from a Deep Model, Query Input by user and using Similarity based functions
- Image Collection Summarization
SimpleImageSummarizer
(using Color Histogram features)DeepSimImageSummarizer
using Features from a Deep Model and Similarity based functionsDeepCoverImageSummarizer
using Features from a Deep Model and Coverage Based FunctionsQuerySimImageSummarizer
using Features from a Deep Model, Query Input by user and using Similarity based functions
- Data Subset Selection for Image Classification
SupervisedDSS
(Supervised Data subset selection using the label information in the data subset selection)UnsupervisedDSS
(Unsupervised Data subset selection not using the label information in data subset selection)
- Diversified Active Learning for Image Classification
Facility Location Functions
(Representation Models)Disparity Min
andDisparity Sum
(Diversity Models)Set Cover
andProbabilistic Set Cover
(Coverage Models)Feature Based Functions
(Coverage Models)Graph Cut
andSaturated Coverage Functions
(Representation Models)
Budgeted Greedy Algorithm
(Lazy or naive greedy algorithm under a budget, say, 60 seconds)Stream Greedy Algorithm
(Provide a threshold for summarization, say, 0.001)Coverage Greedy Algorithm
(Provide a coverage fraction, say, 0.9 fraction of the video)
In the case of video summarization, we support two kinds of segmentation algorithms
- Fixed Length Snippets
- Shot Detection based Snippets
- If you just want to compile and build
SimpleVideoSummarizer
andSimpleImageSummarizer
examples, you only need OpenCV 3 (https://github.com/opencv/opencv) - For running Deep Video Summarizer examples (with Caffe models), you will need to install Caffe (https://github.com/BVLC/caffe). You just need the CPU version of Caffe
- For running the Entity based Summarizers you might also need Dlib if you are using the feature extractor algorithms from dlib.
- Modify the CMakeLists.txt to point to yout OpenCV and Caffe locations
mkdir build
cd build
cmake ..
make
- You can download the videos from here: https://drive.google.com/drive/folders/1EjM38f8mLRfhJ3dVSMD0OlnJWO3RTvLw
-
SimpleVideoSummExample: DisparityMin with Budgeted Summarization
./SimpleVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModel 0 -segmentType 0 -summaryAlgo 0 -budget 30
-
SimpleVideoSummExample: Facility Location with Budgeted Summarization
./SimpleVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModel 2 -segmentType 0 -summaryAlgo 0 -budget 30
-
SimpleImageSummExample: DisparityMin with Budgeted Summarization
./SimpleImageSummExample -directory ~/Desktop/ivsumm/images/ -imageSaveFile ~/Desktop/ivsumm/images/summary-montage.png -summaryModel 0 -summaryAlgo 0 -budget 10 -summarygrid 100
-
DeepVideoSummExample DisparityMin with Budgeted Summarization (Using GoogleNet Scene Model)
./DeepVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModelSim 0 -simcover 0 -segmentType 0 -summaryAlgo 0 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 30
-
DeepVideoSummExample: Facility Location with Budgeted Summarization (Using GoogleNet Scene Model)
./DeepVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModelSim 2 -simcover 0 -segmentType 0 -summaryAlgo 0 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 30
-
DeepVideoSummExample: SetCover with Budgeted Summarization (Using GoogleNet Scene Model)
./DeepVideoSummExample -videoFile <videoFileName> -videoSaveFile <videoSummaryFileName> -summaryModelSim 0 -simcover 1 -segmentType 0 -summaryAlgo 0 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 30
-
DeepImageSummExample: DisparityMin with Budgeted Summarization (Using GoogleNet Scene Model)
./DeepImageSummExample -directory ~/Desktop/ivsumm/images/ -imageSaveFile ../images/summary-montage.png -summaryModelSim 2 -simcover 0 -summaryAlgo 0 -summarygrid 100 -featureLayer loss3/classifier -network_file ../../Models/googlenet_places205/deploy_places205.protxt -trained_file ../../Models/googlenet_places205/googlelet_places205_train_iter_2400000.caffemodel -mean_file ../../Models/hybridCNN/hybridCNN_mean.binaryproto -label_file ../../Models/googlenet_places205/categoryIndex_places205.csv -budget 10
-
EntityFaceSummExample: DisparityMin with Budgeted Summarization (Using Resnet Face detection and Dlib feature extractors)
./EntityFaceSummExample -videoFile ~/Desktop/ivsumm/videos/friends.mp4 -imageSaveFile ~/Desktop/ivsumm/videos/friends-collage.png -summaryModel 0 -summaryAlgo 0 -summarygrid 60 -landmarking_model_file ~/Desktop/DNNModels/dlib/shape_predictor_5_face_landmarks.dat -pretrained_resnet_file ~/Desktop/DNNModels/dlib/dlib_face_recognition_resnet_model_v1.dat -featMode 1 -network_file_face ~/Desktop/DNNModels/ResnetFace/deploy.prototxt -trained_file_face ~/Desktop/DNNModels/ResnetFace/res10_300x300_ssd_iter_140000.caffemodel -label_file_face ~/Desktop/DNNModels/ResnetFace/labels.txt -budget 25