Skip to content

rusriver/natscli

 
 

Repository files navigation

The NATS Command Line Interface

A command line utility to interact with and manage NATS.

This utility replaces various past tools that were named in the form nats-sub and nats-pub, adds several new capabilities and support full JetStream management.

Features

  • JetStream management
  • JetStream data and configuration backup
  • Message publish and subscribe
  • Service requests and creation
  • Benchmarking and Latency testing
  • Super Cluster observation
  • Configuration context maintenance
  • NATS eco system schema registry

Installation

Releases are published to GitHub where zip, rpm and debs for various operating systems can be found.

For OS X brew can be used to install the latest version:

$ brew tap nats-io/nats-tools
$ brew install nats-io/nats-tools/nats

For Arch users there is an AUR package that you can install with:

yay natscli

Nightly builds are included in the synadia/nats-server:nightly Docker images.

Configuration Contexts

The nats CLI supports multiple named configurations, for the rest of the document we'll interact via demo.nats.io. To enable this we'll create a demo configuration and set it as default.

First we add a configuration to capture the default localhost configuration.

$ nats context add local --description "Localhost" 
NATS Configuration Context "localhost"

  Description: Localhost
  Server URLs: nats://127.0.0.1:4222

Next we add a context for demo.nats.io:4222 and we select it as default.

$ nats context add nats --server demo.nats.io:4222 --description "NATS Demo" --select
NATS Configuration Context "nats"

  Description: NATS Demo
  Server URLs: demo.nats.io:4222

These are the contexts, the * indicates the default

$ nats context ls
Known contexts:

   localhost           Localhost
   nats*               NATS Demo

The context is selected as default, use nats context --help to see how to add, remove and edit contexts.

JetStream management

For full information on managing JetStream please refer to the JetStream Technical Preview

Publish and Subscribe

The nats CLI can publish messages and subscribe to subjects.

Basic Behaviours

We will subscribe to the cli.demo subject:

$ nats sub cli.demo 
12:30:25 Subscribing on cli.demo

We can now publish messages to the cli.demo subject.

First we publish a single message:

$ nats pub cli.demo "hello world"
12:31:20 Published 11 bytes to "cli.demo"

Next we publish 5 messages with a counter and timestamp in the format message 5 @ 2020-12-03T12:33:18+01:00:

$ nats pub cli.demo "message {{.Count}} @ {{.TimeStamp}}" --count=10
12:33:17 Published 33 bytes to "cli.demo"
12:33:17 Published 33 bytes to "cli.demo"
12:33:17 Published 33 bytes to "cli.demo"
12:33:18 Published 33 bytes to "cli.demo"
12:33:18 Published 33 bytes to "cli.demo"

We can also publish messages read from STDIN:

$ echo hello|nats pub cli.demo
12:34:15 Reading payload from STDIN
12:34:15 Published 6 bytes to "cli.demo"

Finally, NATS supports HTTP style headers and the CLI behaves like curl:

$ nats pub cli.demo 'hello headers' -H Header1:One -H Header2:Two
12:38:44 Published 13 bytes to "cli.demo"

The receiver will show:

$ nats sub cli.demo 
[#47] Received on "cli.demo"
Header1: One
Header2: Two

hello headers

JetStream

When receiving messages from a JetStream Push Consumer messages can be acknowledged when received by passing --ack, the message metadata is also produced:

$ nats sub js.out.testing --ack
12:55:23 Subscribing on js.out.testing with acknowledgement of JetStream messages
[#1] Received JetStream message: consumer: TESTING > TAIL / subject: js.in.testing / delivered: 1 / consumer seq: 568 / stream seq: 2638 / ack: true
test JS message

Queue Groups

When subscribers join a Queue Group the messages are randomly load shared within the group. Perform the following subscribe in 2 or more shells and then publish messages using some of the methods shown above, these messages will only be received by one of the subscribers at a time.

$ nats sub cli.demo --queue=Q1

Service Requests and Creation

NATS supports a RPC mechanism where a service received Requests and replies with data in response.

$ nats reply 'cli.weather.>' "Weather Service"
12:43:28 Listening on "cli.weather.>" in group "NATS-RPLY-22"

In another shell we can send a request to this service:

$ nats request cli.weather.london
12:46:34 Sending request on "cli.weather.london"
12:46:35 Received on "_INBOX.BJoZpwsshQM5cKUj8KAkT6.HF9jslpP" rtt 404.76854ms
Weather Service

This shows that the service round trip was 404ms, and we can see the response Weather Service.

To make this a bit more interesting we can interact with the wttr.in web service:

$ nats reply 'cli.weather.>' --command "curl -s wttr.in/{{2}}?format=3"
12:47:03 Listening on "cli.weather.>" in group "NATS-RPLY-22"

We can perform the same request again:

$ nats request "cli.weather.{london,newyork}" '' --raw
london: 🌦 +7°C
newyork: ☀️ +2°C

Now the nats CLI parses the subject, extracts the {london,newyork} from the subjects and calls curl, replacing {{2}} with the body of the 2nd subject token - {london,newyork}.

Benchmarking and Latency Testing

Benchmarking and latency testing is key requirement for evaluating the production preparedness of your NATS network.

Benchmarking

Here we'll run these benchmarks against a local server instead of demo.nats.io.

$ nats context select localhost
NATS Configuration Context "localhost"

  Description: Localhost
  Server URLs: nats://127.0.0.1:4222

We can benchmark core NATS publishing performance, here we publish 10 million messages from 5 concurrent publishers. By default messages are published as quick as possible without any acknowledgement or confirmations:

$ nats bench test --msgs=10000000 --pub 5                                                                                                                                                                                                                                                                                                                                                                         <13:03:30
01:30:14 Starting benchmark [msgs=10,000,000, msgsize=128 B, pubs=5, subs=0, js=false, stream=benchstream  storage=memory, syncpub=false, pubbatch=100, jstimeout=30s, pull=false, pullbatch=100, request=false, reply=false, noqueue=false, maxackpending=-1, replicas=1, purge=false]
Finished      0s [================================================] 100%
Finished      0s [================================================] 100%
Finished      0s [================================================] 100%
Finished      0s [================================================] 100%
Finished      0s [================================================] 100%

Pub stats: 14,047,987 msgs/sec ~ 1.67 GB/sec
 [1] 3,300,540 msgs/sec ~ 402.90 MB/sec (2000000 msgs)
 [2] 3,306,601 msgs/sec ~ 403.64 MB/sec (2000000 msgs)
 [3] 3,296,538 msgs/sec ~ 402.41 MB/sec (2000000 msgs)
 [4] 2,813,752 msgs/sec ~ 343.48 MB/sec (2000000 msgs)
 [5] 2,811,227 msgs/sec ~ 343.17 MB/sec (2000000 msgs)
 min 2,811,227 | avg 3,105,731 | max 3,306,601 | stddev 239,453 msgs

Adding --sub 2 will start two subscribers on the same subject and measure the rate of messages:

$ nats bench test --msgs=10000000 --pub 5 --sub 2
...
01:30:52 Starting benchmark [msgs=10,000,000, msgsize=128 B, pubs=5, subs=2, js=false, stream=benchstream  storage=memory, syncpub=false, pubbatch=100, jstimeout=30s, pull=false, pullbatch=100, request=false, reply=false, noqueue=false, maxackpending=-1, replicas=1, purge=false]
01:30:52 Starting subscriber, expecting 10,000,000 messages
01:30:52 Starting subscriber, expecting 10,000,000 messages
Finished      6s [================================================] 100%
Finished      6s [================================================] 100%
Finished      6s [================================================] 100%
Finished      6s [================================================] 100%
Finished      6s [================================================] 100%
Finished      6s [================================================] 100%
Finished      6s [================================================] 100%

NATS Pub/Sub stats: 4,906,104 msgs/sec ~ 598.89 MB/sec
 Pub stats: 1,635,428 msgs/sec ~ 199.64 MB/sec
  [1] 328,573 msgs/sec ~ 40.11 MB/sec (2000000 msgs)
  [2] 328,147 msgs/sec ~ 40.06 MB/sec (2000000 msgs)
  [3] 327,411 msgs/sec ~ 39.97 MB/sec (2000000 msgs)
  [4] 327,318 msgs/sec ~ 39.96 MB/sec (2000000 msgs)
  [5] 327,283 msgs/sec ~ 39.95 MB/sec (2000000 msgs)
  min 327,283 | avg 327,746 | max 328,573 | stddev 520 msgs
 Sub stats: 3,271,233 msgs/sec ~ 399.32 MB/sec
  [1] 1,635,682 msgs/sec ~ 199.67 MB/sec (10000000 msgs)
  [2] 1,635,616 msgs/sec ~ 199.66 MB/sec (10000000 msgs)
  min 1,635,616 | avg 1,635,649 | max 1,635,682 | stddev 33 msgs

JetStream testing can be done by adding the --js flag. You can for example measure first the speed of publishing into a stream

$ nats bench js.bench --js --pub 2 --msgs 1000000 --purge
01:37:36 Starting benchmark [msgs=1,000,000, msgsize=128 B, pubs=2, subs=0, js=true, stream=benchstream  storage=memory, syncpub=false, pubbatch=100, jstimeout=30s, pull=false, pullbatch=100, request=false, reply=false, noqueue=false, maxackpending=-1, replicas=1, purge=true]
01:37:36 Purging the stream
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%

Pub stats: 415,097 msgs/sec ~ 50.67 MB/sec
 [1] 207,907 msgs/sec ~ 25.38 MB/sec (500000 msgs)
 [2] 207,572 msgs/sec ~ 25.34 MB/sec (500000 msgs)
 min 207,572 | avg 207,739 | max 207,907 | stddev 167 msgs

And then you can for example measure the speed of receiving (i.e. replay) the messages from the stream using ordered push consumers

$ nats bench js.bench --js --sub 4 --msgs 1000000
01:40:05 Starting benchmark [msgs=1,000,000, msgsize=128 B, pubs=0, subs=4, js=true, stream=benchstream  storage=memory, syncpub=false, pubbatch=100, jstimeout=30s, pull=false, pullbatch=100, request=false, reply=false, noqueue=false, maxackpending=-1, replicas=1, purge=false]
01:40:05 Starting subscriber, expecting 1,000,000 messages
01:40:05 Starting subscriber, expecting 1,000,000 messages
01:40:05 Starting subscriber, expecting 1,000,000 messages
01:40:05 Starting subscriber, expecting 1,000,000 messages
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%

Sub stats: 1,522,920 msgs/sec ~ 185.90 MB/sec
 [1] 382,739 msgs/sec ~ 46.72 MB/sec (1000000 msgs)
 [2] 382,772 msgs/sec ~ 46.73 MB/sec (1000000 msgs)
 [3] 382,407 msgs/sec ~ 46.68 MB/sec (1000000 msgs)
 [4] 381,060 msgs/sec ~ 46.52 MB/sec (1000000 msgs)
 min 381,060 | avg 382,244 | max 382,772 | stddev 698 msgs

Similarily you can benchmark synchronous request/reply type of interactions using the --request and --reply flags. For example you can first start one (or more) replier(s)

$ nats bench test --sub 2 --reply

And then run a benchmark with one (or more) synchronous requester(s)

$ nats bench test --pub 10 --request 
03:04:56 Starting benchmark [msgs=100,000, msgsize=128 B, pubs=10, subs=0, js=false, stream=benchstream  storage=memory, syncpub=false, pubbatch=100, jstimeout=30s, pull=false, pullbatch=100, request=true, reply=false, noqueue=false, maxackpending=-1, replicas=1, purge=false]
03:04:56 Benchmark in request/reply mode
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%
Finished      2s [================================================] 100%

Pub stats: 40,064 msgs/sec ~ 4.89 MB/sec
 [1] 4,045 msgs/sec ~ 505.63 KB/sec (10000 msgs)
 [2] 4,031 msgs/sec ~ 503.93 KB/sec (10000 msgs)
 [3] 4,034 msgs/sec ~ 504.37 KB/sec (10000 msgs)
 [4] 4,031 msgs/sec ~ 503.92 KB/sec (10000 msgs)
 [5] 4,022 msgs/sec ~ 502.85 KB/sec (10000 msgs)
 [6] 4,028 msgs/sec ~ 503.59 KB/sec (10000 msgs)
 [7] 4,025 msgs/sec ~ 503.22 KB/sec (10000 msgs)
 [8] 4,028 msgs/sec ~ 503.59 KB/sec (10000 msgs)
 [9] 4,025 msgs/sec ~ 503.15 KB/sec (10000 msgs)
 [10] 4,018 msgs/sec ~ 502.28 KB/sec (10000 msgs)
 min 4,018 | avg 4,028 | max 4,045 | stddev 7 msgs

There are numerous other flags that can be set to configure size of messages, using push or pull JetStream consumers and much more, see nats bench --help.

Latency

Latency is the rate at which messages can cross your network, with the nats CLI you can connect a publisher and subscriber to your NATS network and measure the latency between the publisher and subscriber.

$ nats latency --server-b localhost:4222 --rate 500000 
==============================
Pub Server RTT : 64µs
Sub Server RTT : 70µs
Message Payload: 8B
Target Duration: 5s
Target Msgs/Sec: 500000
Target Band/Sec: 7.6M
==============================
HDR Percentiles:
10:       57µs
50:       94µs
75:       122µs
90:       162µs
99:       314µs
99.9:     490µs
99.99:    764µs
99.999:   863µs
99.9999:  886µs
99.99999: 1.483ms
100:      1.483ms
==============================
Actual Msgs/Sec: 499990
Actual Band/Sec: 7.6M
Minimum Latency: 25µs
Median Latency : 94µs
Maximum Latency: 1.483ms
1st Sent Wall Time : 3.091ms
Last Sent Wall Time: 5.000098s
Last Recv Wall Time: 5.000168s

Various flags exist to adjust message size and target rates, see nats latency --help

Super Cluster observation

NATS publish a number of events and have a Request/Reply API that expose a wealth of internal information about the state of the network.

For most of these features you will need a System Account enabled, most of these commands are run against that account.

I create a system context before running these commands and pass that to the commands.

Lifecycle Events

$ nats event --context system
Listening for Client Connection events on $SYS.ACCOUNT.*.CONNECT
Listening for Client Disconnection events on $SYS.ACCOUNT.*.DISCONNECT
Listening for Authentication Errors events on $SYS.SERVER.*.CLIENT.AUTH.ERR

[12:18:35] [puGCIK5UcWUxBXJ52q4Hti] Client Connection

   Server: nc1-c1
  Cluster: c1

   Client:
                 ID: 17
               User: one
               Name: NATS CLI Version development
            Account: one
    Library Version: 1.11.0  Language: go
               Host: 172.21.0.1

[12:18:35] [puGCIK5UcWUxBXJ52q4Hw8] Client Disconnection

   Reason: Client Closed
   Server: nc1-c1
  Cluster: c1

   Client:
                 ID: 17
               User: one
               Name: NATS CLI Version development
            Account: one
    Library Version: 1.11.0  Language: go
               Host: 172.21.0.1

   Stats:
      Received: 0 messages (0 B)
     Published: 1 messages (0 B)
           RTT: 1.551714ms

Here one can see a client connected and disconnected shortly after, several other system events are supported.

If an account is running JetStream the nats event tool can also be used to look at JetStream advisories by passing --js-metric --js-advisory

These events are JSON messages and can be viewed raw using --json or in Cloud Events format with --cloudevent, finally a short version of the messages can be shown:

$ nats event --short
Listening for Client Connection events on $SYS.ACCOUNT.*.CONNECT
Listening for Client Disconnection events on $SYS.ACCOUNT.*.DISCONNECT
Listening for Authentication Errors events on $SYS.SERVER.*.CLIENT.AUTH.ERR
12:20:58 [Connection] user: one cid: 19 in account one
12:20:58 [Disconnection] user: one cid: 19 in account one: Client Closed
12:21:00 [Connection] user: one cid: 20 in account one
12:21:00 [Disconnection] user: one cid: 20 in account one: Client Closed
12:21:00 [Connection] user: one cid: 21 in account one

Super Cluster Discovery and Observation

When a cluster or super cluster of NATS servers is configured with a system account a wealth of information is available via internal APIs, the nats tool can interact with these and observe your servers.

A quick view of the available servers and your network RTT to each can be seen with nats server ping:

$ nats server ping
nc1-c1                                                       rtt=2.30864ms
nc3-c1                                                       rtt=2.396573ms
nc2-c1                                                       rtt=2.484994ms
nc3-c2                                                       rtt=2.549958ms
...

---- ping statistics ----
9 replies max: 3.00 min: 1.00 avg: 2.78

A general server overview can be seen with nats server list:

$ nats server list
+----------------------------------------------------------------------------------------------------------------------------+
|                                                      Server Overview                                                       |
+--------+------------+-----------+---------------+-------+------+--------+-----+---------+-----+------+--------+------------+
| Name   | Cluster    | IP        | Version       | Conns | Subs | Routes | GWs | Mem     | CPU | Slow | Uptime | RTT        |
+--------+------------+-----------+---------------+-------+------+--------+-----+---------+-----+------+--------+------------+
| nc1-c1 | c1         | localhost | 2.2.0-beta.34 | 1     | 97   | 2      | 2   | 13 MiB  | 0.0 | 0    | 5m29s  | 3.371675ms |
| nc2-c1 | c1         | localhost | 2.2.0-beta.34 | 0     | 97   | 2      | 2   | 13 MiB  | 0.0 | 0    | 5m29s  | 3.48287ms  |
| nc3-c1 | c1         | localhost | 2.2.0-beta.34 | 0     | 97   | 2      | 2   | 14 MiB  | 0.0 | 0    | 5m30s  | 3.57123ms  |
| nc1-c3 | c3         | localhost | 2.2.0-beta.34 | 0     | 96   | 2      | 2   | 15 MiB  | 0.0 | 0    | 5m29s  | 3.655548ms |
...
+--------+------------+-----------+---------------+-------+------+--------+-----+---------+-----+------+--------+------------+
|        | 3 Clusters | 9 Servers |               | 1     | 867  |        |     | 125 MiB |     | 0    |        |            |
+--------+------------+-----------+---------------+-------+------+--------+-----+---------+-----+------+--------+------------+

+----------------------------------------------------------------------------+
|                              Cluster Overview                              |
+---------+------------+-------------------+-------------------+-------------+
| Cluster | Node Count | Outgoing Gateways | Incoming Gateways | Connections |
+---------+------------+-------------------+-------------------+-------------+
| c1      | 3          | 6                 | 6                 | 1           |
| c3      | 3          | 6                 | 6                 | 0           |
| c2      | 3          | 6                 | 6                 | 0           |
+---------+------------+-------------------+-------------------+-------------+
|         | 9          | 18                | 18                | 1           |
+---------+------------+-------------------+-------------------+-------------+

Data from a specific server can be accessed using it's server name or ID:

$ nats server info nc1-c1
Server information for nc1-c1 (NBNIKFCQZ3J6I7JDTUDHAH3Z3HOQYEYGZZ5HOS63BX47PS66NHPT2P72)

Process Details:

         Version: 2.2.0-beta.34
      Git Commit: 2e26d919
      Go Version: go1.14.12
      Start Time: 2020-12-03 12:18:00.423780567 +0000 UTC
          Uptime: 10m1s

Connection Details:

   Auth Required: true
    TLS Required: false
            Host: localhost:10000
     Client URLs: localhost:10000
                  localhost:10002
                  localhost:10001

Limits:

        Max Conn: 65536
        Max Subs: 0
     Max Payload: 1.0 MiB
     TLS Timeout: 2s
  Write Deadline: 10s

Statistics:

       CPU Cores: 2 1.00%
          Memory: 13 MiB
     Connections: 1
   Subscriptions: 0
            Msgs: 240 in 687 out
           Bytes: 151 KiB in 416 KiB out
  Slow Consumers: 0

Cluster:

            Name: c1
            Host: 0.0.0.0:6222
            URLs: nc1:6222
                  nc2:6222
                  nc3:6222

Super Cluster:

            Name: c1
            Host: 0.0.0.0:7222
        Clusters: c1
                  c2
                  c3

Additional to this various reports can be generated using nats server report, this allows one to list all connections and subscriptions across the entire cluster with filtering to limit the results by account etc.

Additional raw information in JSON format can be retrieved using the nats server request commands.

Schema Registry

We are adopting JSON Schema to describe the core data formats of events and advisories - as shown by nats event. Additionally all the API interactions with the JetStream API is documented using the same format.

These schemas can be used using tools like QuickType to generate stubs for various programming languages.

The nats CLI allows you to view these schemas and validate documents using these schemas.

$ nats schema ls
Matched Schemas:

  io.nats.jetstream.advisory.v1.api_audit
  io.nats.jetstream.advisory.v1.consumer_action
  io.nats.jetstream.advisory.v1.max_deliver
...

The schemas can be limited using a regular expression, try nats schema ls request to see all API requests.

Schemas can be viewed in their raw JSON or YAML formats using nats schema show io.nats.jetstream.advisory.v1.consumer_action, these schemas include descriptions about each field and more.

Finally, if you are interacting with the API using JSON request messages constructed using languages that is not supported by our own management libraries you can use this tool to validate your messages:

$ nats schema validate io.nats.jetstream.api.v1.stream_create_request request.json
Validation errors in request.json:

  retention: retention must be one of the following: "limits", "interest", "workqueue"
  (root): Must validate all the schemas (allOf)

Here I validate request.json against the Schema that describes the API to create Streams, the validation indicates that I have an incorrect value in the retention field.

About

The NATS Command Line Interface

Resources

License

Code of conduct

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Go 100.0%