Skip to content

Commit

Permalink
Mention Ground Zero project (HoTT formalization in Lean 4)
Browse files Browse the repository at this point in the history
  • Loading branch information
fizruk committed Apr 4, 2024
1 parent fd803de commit 0aae3bf
Show file tree
Hide file tree
Showing 2 changed files with 24 additions and 19 deletions.
20 changes: 11 additions & 9 deletions docs/docs/en/related.md
Original file line number Diff line number Diff line change
Expand Up @@ -39,13 +39,13 @@ Aya is implemented in Java.

I do not know of existing formalization libraries in Aya.

## The <b><span style="color: red">red</span>*</b> family
## The <b><span style="color: red">red</span>\*</b> family

[<b><span style="color: #135cb7;">cool</span>tt</b>](https://github.com/redprl/cooltt), [<b><span style="color: red">red</span>tt</b>](https://github.com/redprl/redtt), and [<b><span style="color: red">Red</span>PRL</b>](https://redprl.readthedocs.io/en/latest/) are a family of experimental proof assistants developed by the [<b><span style="color: red">Red</span>PRL</b> Development Team](https://redprl.org).

There is a [<b><span style="color: red">red</span>tt</b> mathematical library](https://github.com/RedPRL/redtt/tree/master/library)

The <b><span style="color: red">red</span>*</b> family of proof assistants is implemented in OCaml.
The <b><span style="color: red">red</span>\*</b> family of proof assistants is implemented in OCaml.
The developers also have a related [<b><span style="color: rgb(133, 177, 96);">A.L.G.A.E.<span></b> project](https://redprl.org/#algae),
which aims to provide composable (OCaml) libraries that facilitate the construction of a usable proof assistant from a core type checker.

Expand All @@ -60,6 +60,7 @@ Other notable formalizations of HoTT in Coq include [Coq-HoTT](https://github.co
Coq is implemented in OCaml.

## Cubical Agda

[Cubical Agda](https://agda.readthedocs.io/en/latest/language/cubical.html) is a mode extending Agda with a variety of features from Cubical Type Theory[^1] [^2].

Although technical a mode within Agda, it is probably best seen as a separate language.
Expand Down Expand Up @@ -89,7 +90,11 @@ Hence, a formalization of [HoTT in Lean 2](https://github.com/leanprover/lean2/t
However, since Lean 2 is not supported anymore, the formalization is also unmantained.

Lean 3 and 4 has dropped the mode that allowed (direct) HoTT formalization.
There is, however, an unmaintained [port of Lean 2 HoTT Library to Lean 3](https://github.com/gebner/hott3).
However, the [Ground Zero](https://github.com/forked-from-1kasper/ground_zero) project
attempts to formalize HoTT in Lean 4. The project makes use of the [large elimination checker](https://github.com/forked-from-1kasper/ground_zero/blob/d8c41ea2910d81d3c1bf6c2762663473368016ab/GroundZero/Meta/HottTheory.lean),
ported from an unmaintained [port of Lean 2 HoTT Library to Lean 3](https://github.com/gebner/hott3),
which enables HoTT and non-HoTT scopes to coexist consistently (as the project authors believe).
In particular, attempting to show UIP results in a type error under HoTT scope in the Ground Zero project.

Lean 2 and 3 are implemented in C++.
Lean 4 is implemented in itself (and a bit of C++)!
Expand All @@ -102,22 +107,19 @@ Lean 4 is implemented in itself (and a bit of C++)!
<https://doi.org/10.4230/LIPIcs.TYPES.2015.5>

[^2]:
Thierry Coquand, Simon Huber, and Anders Mörtberg.
2018. _On Higher Inductive Types in Cubical Type Theory_.
Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. _On Higher Inductive Types in Cubical Type Theory_.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '18).
Association for Computing Machinery, New York, NY, USA, 255–264.
<https://doi.org/10.1145/3209108.3209197>

[^3]:
Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters.
2017. _The HoTT library: a formalization of homotopy type theory in Coq_.
Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters. 2017. _The HoTT library: a formalization of homotopy type theory in Coq_.
In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2017).
Association for Computing Machinery, New York, NY, USA, 164–172.
<https://doi.org/10.1145/3018610.3018615>

[^4]:
Floris van Doorn, Jakob von Raumer & Ulrik Buchholtz.
2017. _Homotopy Type Theory in Lean_.
Floris van Doorn, Jakob von Raumer & Ulrik Buchholtz. 2017. _Homotopy Type Theory in Lean_.
In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017.
Lecture Notes in Computer Science(), vol 10499. Springer, Cham.
<https://doi.org/10.1007/978-3-319-66107-0_30>
23 changes: 13 additions & 10 deletions docs/docs/ru/related.md
Original file line number Diff line number Diff line change
Expand Up @@ -44,7 +44,7 @@ Aya реализована на Java.

Мне неизвестны библиотеки формализации на Aya.

## Семейство <b><span style="color: red">red</span>*</b>
## Семейство <b><span style="color: red">red</span>\*</b>

[<b><span style="color: #135cb7;">cool</span>tt</b>](https://github.com/redprl/cooltt),
[<b><span style="color: red">red</span>tt</b>](https://github.com/redprl/redtt),
Expand All @@ -54,8 +54,8 @@ Aya реализована на Java.

Существует формализация [математической библиотеки <b><span style="color: red">red</span>tt</b>](https://github.com/RedPRL/redtt/tree/master/library)

Семейство решателей <b><span style="color: red">red</span>*</b> реализовано на языке программирования OCaml.
Создатели семества решателей также работают над [проектом <b><span style="color: rgb(133, 177, 96);">A.L.G.A.E.<span></b>](https://redprl.org/#algae),
Семейство решателей <b><span style="color: red">red</span>\*</b> реализовано на языке программирования OCaml.
Создатели семества решателей также работают над [проектом <b><span style="color: rgb(133, 177, 96);">A.L.G.A.E.<span></b>](https://redprl.org/#algae),
который нацелен на реализацию ряда удобных библиотек (для OCaml) для помощи в реализации
решателей теорем на основе проверки типов для ядра решателя.

Expand All @@ -70,6 +70,7 @@ Coq — это зрелый решатель теорем, основанный
Coq реализован на OCaml.

## Cubical Agda

[Cubical Agda](https://agda.readthedocs.io/en/latest/language/cubical.html) (кубическая Агда)
— это расширение Agda набором возможностей кубической теории типов[^1] [^2].

Expand Down Expand Up @@ -102,7 +103,12 @@ Lean 2, как и Agda, поддерживал режим без уникаль
Однако, Lean 2 больше не поддерживается и формализация, соответственно, тоже.

Lean 3 и 4 убрали режим, допускающий (прямую) формализацию гомотопической теории типов.
Однако, существует ныне неподдерживаемый [проект по переносу библиотеки HoTT с Lean 2 на Lean 3](https://github.com/gebner/hott3).
Несмотря на это проект [Ground Zero](https://github.com/forked-from-1kasper/ground_zero)
продолжает формализацию HoTT на Lean 4. Проект использует [проверку элиминации](https://github.com/forked-from-1kasper/ground_zero/blob/d8c41ea2910d81d3c1bf6c2762663473368016ab/GroundZero/Meta/HottTheory.lean),
портированную из неподдерживаемого [проекта по переносу библиотеки HoTT с Lean 2 на Lean 3](https://github.com/gebner/hott3).
Эта проверка позволяет поддерживать окружение HoTT, совместимое со стандартным окружением Lean (по крайней мере по убеждениям авторов проекта).
В частности, попытка (напрямую) доказать принцип неразличимости доказательств равенства (Uniqueness of Identity Proofs)
приводит к ошибки типизации в рамках проекта Ground Zero.

Lean 2 и 3 реализованы на C++.
Lean 4 реализован в основном на самом себе (и немного на C++)!
Expand All @@ -115,22 +121,19 @@ Lean 4 реализован в основном на самом себе (и н
<https://doi.org/10.4230/LIPIcs.TYPES.2015.5>

[^2]:
Thierry Coquand, Simon Huber, and Anders Mörtberg.
2018. _On Higher Inductive Types in Cubical Type Theory_.
Thierry Coquand, Simon Huber, and Anders Mörtberg. 2018. _On Higher Inductive Types in Cubical Type Theory_.
In Proceedings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS '18).
Association for Computing Machinery, New York, NY, USA, 255–264.
<https://doi.org/10.1145/3209108.3209197>

[^3]:
Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters.
2017. _The HoTT library: a formalization of homotopy type theory in Coq_.
Andrej Bauer, Jason Gross, Peter LeFanu Lumsdaine, Michael Shulman, Matthieu Sozeau, and Bas Spitters. 2017. _The HoTT library: a formalization of homotopy type theory in Coq_.
In Proceedings of the 6th ACM SIGPLAN Conference on Certified Programs and Proofs (CPP 2017).
Association for Computing Machinery, New York, NY, USA, 164–172.
<https://doi.org/10.1145/3018610.3018615>

[^4]:
Floris van Doorn, Jakob von Raumer & Ulrik Buchholtz.
2017. _Homotopy Type Theory in Lean_.
Floris van Doorn, Jakob von Raumer & Ulrik Buchholtz. 2017. _Homotopy Type Theory in Lean_.
In: Ayala-Rincón, M., Muñoz, C.A. (eds) Interactive Theorem Proving. ITP 2017.
Lecture Notes in Computer Science(), vol 10499. Springer, Cham.
<https://doi.org/10.1007/978-3-319-66107-0_30>

0 comments on commit 0aae3bf

Please sign in to comment.