Skip to content

Commit

Permalink
add hermitian_decomposition method
Browse files Browse the repository at this point in the history
given a Hermitian matrix U, returns a matrix A such that U = AA*

use translated GAP source code for BaseChangeCanonical
  • Loading branch information
jacksonwalters committed Dec 27, 2024
1 parent c9dd1e8 commit f2f35b7
Showing 1 changed file with 143 additions and 0 deletions.
143 changes: 143 additions & 0 deletions src/sage/matrix/matrix2.pyx
Original file line number Diff line number Diff line change
Expand Up @@ -12952,6 +12952,149 @@ cdef class Matrix(Matrix1):
else:
return subspace

def hermitian_decomposition(self):
r"""
Return the conjugate square root factorization of a Hermitian matrix.

Generally the base ring needs to be a finite field `GF(q**2)`.

OUTPUT:

For a matrix `A` the routine returns a matrix `B` such that,

.. MATH::

A = B^\ast B

where `B^\ast` is the conjugate-transpose.

ALGORITHM:

The algorithm is a translation of BaseChangeToCanonical in the GAP `forms` package for a Hermitian form.

TESTS:

Verify we can decompose a Hermitian matrix::

sage: A = matrix(GF(11**2),[[1,4,7],[4,1,4],[7,4,1]])
sage: B = A.hermitian_decomposition()
sage: A == B*B.H
True

Verify we can decompose a Hermatrix matrix for which there is no triangular decomposition::

sage: A = matrix(GF(3**2),[[0, 1, 2], [1, 0, 1], [2, 1, 0]])
sage: B = A.hermitian_decomposition()
sage: A == B*B.H
True

"""
from sage.matrix.constructor import identity_matrix
from sage.misc.functional import sqrt

F = self._base_ring
n = self.nrows()

if not (F.is_finite() and F.order().is_square()):
raise ValueError("The base ring must be a finite field GF(q**2).")

q = sqrt(F.order())

def conj_square_root(u):
if u == 0:
return 0
z = F.multiplicative_generator()
k = u.log(z)
if k % (q+1) != 0:
raise ValueError("Unable to factor: u is not in base field GF(q)")
return z**(k // (q+1))

if not self.is_hermitian():
raise ValueError("matrix is not Hermitian")

A = copy(self)
D = identity_matrix(F, n)
row = 0

# Diagonalize A
while True:
row += 1

# Look for a non-zero element on the main diagonal, starting from `row`
i = row - 1 # Adjust for zero-based indexing in Sage
while i < n and A[i, i].is_zero():
i += 1

if i == row - 1:
# Do nothing since A[row, row] != 0
pass
elif i < n:
# Swap to ensure A[row, row] != 0
A.swap_rows(row - 1, i)
A.swap_columns(row - 1, i)
D.swap_rows(row - 1, i)
else:
# All entries on the main diagonal are zero; look for an off-diagonal element
i = row - 1
while i < n - 1:
k = i + 1
while k < n and A[i, k].is_zero():
k += 1
if k == n:
i += 1
else:
break

if i == n - 1:
# All elements are zero; terminate
row -= 1
r = row
break

# Fetch the non-zero element and place it at A[row, row + 1]
if i != row - 1:
A.swap_rows(row - 1, i)
A.swap_columns(row - 1, i)
D.swap_rows(row - 1, i)

A.swap_rows(row, k)
A.swap_columns(row, k)
D.swap_rows(row, k)

b = A[row, row - 1]**(-1)
A.add_multiple_of_column(row - 1, row, b**q)
A.add_multiple_of_row(row - 1, row, b)
D.add_multiple_of_row(row - 1, row, b)

# Eliminate below-diagonal entries in the current column
a = -A[row - 1, row - 1]**(-1)
for i in range(row, n):
b = A[i, row - 1] * a
if not b.is_zero():
A.add_multiple_of_column(i,row - 1, b**q)
A.add_multiple_of_row(i, row - 1, b)
D.add_multiple_of_row(i, row - 1, b)

if row == n - 1:
break

# Count how many variables have been used
if row == n - 1:
if not A[n - 1, n - 1].is_zero():
r = n
else:
r = n - 1

# Normalize diagonal elements to 1
for i in range(r):
a = A[i, i]
if not a.is_one():
# Find an element `b` such that `a = b*b^q = b^(q+1)`
b = conj_square_root(a)
D.rescale_row(i, 1 / b)

return D.inverse()

def cholesky(self):
r"""
Return the Cholesky decomposition of a Hermitian matrix.
Expand Down

0 comments on commit f2f35b7

Please sign in to comment.