Skip to content

salma1601/nilearn

 
 

Repository files navigation

Build Status https://coveralls.io/repos/nilearn/nilearn/badge.svg?branch=master

nilearn

Nilearn is a Python module for fast and easy statistical learning on NeuroImaging data.

It leverages the scikit-learn Python toolbox for multivariate statistics with applications such as predictive modelling, classification, decoding, or connectivity analysis.

This work is made available by a community of people, amongst which the INRIA Parietal Project Team and the scikit-learn folks, in particular P. Gervais, A. Abraham, V. Michel, A. Gramfort, G. Varoquaux, F. Pedregosa, B. Thirion, M. Eickenberg, C. F. Gorgolewski, D. Bzdok, L. Estève and B. Cipollini.

Important links

Dependencies

The required dependencies to use the software are:

  • Python >= 2.6,
  • setuptools
  • Numpy >= 1.6.1
  • SciPy >= 0.9
  • Scikit-learn >= 0.12.1
  • Nibabel >= 1.1.0

If you are using nilearn plotting functionalities or running the examples, matplotlib >= 1.1.1 is required.

If you want to run the tests, you need nose >= 1.2.1 and coverage >= 3.6.

Install

First make sure you have installed all the dependencies listed above. Then you can install nilearn by running the following command in a command prompt:

pip install -U --user nilearn

More detailed instructions are available at http://nilearn.github.io/introduction.html#installation.

Development

Code

GIT

You can check the latest sources with the command:

git clone git://github.com/nilearn/nilearn

or if you have write privileges:

git clone git@github.com:nilearn/nilearn

About

Machine learning for NeuroImaging in Python

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.5%
  • Other 0.5%