-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
2 changed files
with
93 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,92 @@ | ||
from pathlib import Path | ||
import torch | ||
from lantern import module_device | ||
import lit | ||
|
||
from perceptor.transforms import resize | ||
from perceptor.losses.interface import LossInterface | ||
|
||
|
||
class LiT(LossInterface): | ||
def __init__( | ||
self, | ||
name="LiT-L16L", | ||
cache_dir=Path("models"), | ||
): | ||
""" | ||
LiT image-text similarity | ||
Args: | ||
model_name (str): Name of the model to load. "LiT-B16B_2" or "LiT-L16L" | ||
cache_dir (str): Path to the directory where the model is cached. | ||
""" | ||
super().__init__() | ||
self.model = lit.LiT(name, cache_dir) | ||
self.encodings = None | ||
self.weights = None | ||
|
||
@property | ||
def device(self): | ||
return module_device(self) | ||
|
||
def add_texts_(self, texts, weights=None): | ||
return self.add_encodings_(self.model.encode_texts(texts), weights) | ||
|
||
def add_images_(self, images, weights=None): | ||
if images.shape[-2:] != self.model.image_size: | ||
images = resize(images, out_shape=self.model.image_size) | ||
return self.add_encodings_(self.model.encode_images(images), weights) | ||
|
||
def add_encodings_( | ||
self, | ||
encodings, | ||
weights=None, | ||
): | ||
if isinstance(weights, list) or isinstance(weights, tuple): | ||
weights = torch.tensor(weights) | ||
elif weights is None: | ||
weights = torch.ones_like(encodings[:, 0]) | ||
|
||
if self.encodings is None: | ||
self.encodings = torch.nn.Parameter( | ||
encodings.to(self.device), requires_grad=False | ||
) | ||
self.weights = torch.nn.Parameter( | ||
weights.to(self.device), | ||
requires_grad=False, | ||
) | ||
else: | ||
self.encodings = torch.nn.Parameter( | ||
torch.cat([self.encodings, encodings.to(self.device)]), | ||
requires_grad=False, | ||
) | ||
self.weights = torch.nn.Parameter( | ||
torch.cat([self.weights, weights.to(self.device)]), | ||
requires_grad=False, | ||
) | ||
return self | ||
|
||
def forward(self, images): | ||
if images.shape[-2:] != self.model.image_size: | ||
images = resize(images, out_shape=self.model.image_size) | ||
image_encodings = self.model.encode_images(images) | ||
spherical_distance = ( | ||
(image_encodings[:, None] - self.encodings[None, :]) | ||
.norm(dim=2) | ||
.div(2) | ||
.arcsin() | ||
.square() | ||
.mul(2) | ||
) | ||
return (spherical_distance * self.weights).mean() | ||
|
||
|
||
def test_lit(): | ||
torch.set_grad_enabled(False) | ||
loss = LiT().add_texts_(["hello", "world"]).add_images_(torch.randn(1, 3, 256, 256)) | ||
|
||
image = torch.randn(1, 3, 256, 256).requires_grad_() | ||
with torch.enable_grad(): | ||
loss(image).backward() | ||
|
||
assert image.grad is not None |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters