Simplify your three.js application development with three.ez!
InstancedMesh2
is an alternative version of InstancedMesh
that offers advantages:
- frustum culling for each instance
- spatial indexing (BVH) for fast raycasting and frustum culling
- dynamic capacity
- visibility for each instance
- each instance can have an object similar to
Object3D
to simplify its use - sorting
- LOD
- shadow LOD
- uniform per instance
import { InstancedMesh2 } from '@three.ez/instanced-mesh';
const myInstancedMesh = new InstancedMesh2(geometry, material);
myInstancedMesh.addInstances(count, (obj, index) => {
obj.position.x = index;
obj.rotateY(Math.PI);
});
myInstancedMesh.computeBVH();
This library has two dependencies:
three.js r159+
bvh.js
These examples use vite
, and some mobile devices may run out of memory.
- 1kk static trees
- Instances array dynamic
- Sorting
- Custom material
- Dynamic BVH (no vite)
- Fast raycasting
- LOD
- Shadow LOD
- Dynamic adding with BVH
More examples will be added soon...
If you have questions or need assistance, you can ask on our discord server or open an issue on this repository.
If you find this project helpful, please consider to leave a star! 🌟
Thank you so much for your support!
Avoiding rendering objects outside the camera frustum can drastically improve performance (especially for complex geometries).
Frustum culling by default is performed by iterating all instances, but it is possible to speed up this process by creating a spatial indexing data structure (BVH).
By default perObjectFrustumCulled
is true.
Sorting should be used to decrease overdraw and render transparent objects.
By default sortObjects
is false.
import { createRadixSort } from '@three.ez/instanced-mesh';
myInstancedMesh.sortObjects = true;
myInstancedMesh.customSort = createRadixSort(myInstancedMesh);
Set the visibility status of each instance like this:
myInstancedMesh.setVisibilityAt(false, 0);
myInstancedMesh.instances[0].visible = false; // if instances array is created
It is possible to create an array of InstancedEntity (Object3D-like) in order to easily change the visibility, apply transformations and add custom data to each instance, using more memory.
myInstancedMesh.createInstances((obj, index) => {
obj.position.random();
});
myInstancedMesh.instances[0].visible = false;
myInstancedMesh.instances[1].userData = {};
myInstancedMesh.instances[2].position.random();
myInstancedMesh.instances[2].quaternion.random();
myInstancedMesh.instances[2].scale.random();
myInstancedMesh.instances[2].updateMatrix(); // necessary after transformations
myInstancedMesh.instances[3].rotateX(Math.PI);
myInstancedMesh.instances[3].updateMatrix(); // necessary after transformations
To speed up raycasting and frustum culling, a spatial indexing data structure can be created to contain the boundingBoxes of all instances.
This works very well if the instances are mostly static (updating a BVH can be expensive) and scattered in world space.
// call this function after all instances have been valued
myInstancedMesh.computeBVH({ margin: 0, highPrecision: false });
If all instances are static set the margin to 0.
Setting a margin makes BVH updating faster, but may make raycasting and frustum culling slightly slower.
Work in progress...
Work in progress...
If you are not using a BVH, you can set the raycastOnlyFrustum
property to true to avoid iterating over all instances.
It's also highly recommended to use three-mesh-bvh to create a geometry BVH.
InstancedMesh2
export type Entity<T> = InstancedEntity & T;
export type UpdateEntityCallback<T> = (obj: Entity<T>, index: number) => void;
export interface BVHParams {
margin?: number;
highPrecision?: boolean;
}
export declare class InstancedMesh2<TCustomData = {}, TGeometry extends BufferGeometry = BufferGeometry, TMaterial extends Material | Material[] = Material, TEventMap extends Object3DEventMap = Object3DEventMap> extends Mesh<TGeometry, TMaterial, TEventMap> {
type: 'InstancedMesh2';
isInstancedMesh2: true;
instances: Entity<TCustomData>[];
instanceIndex: GLInstancedBufferAttribute;
matricesTexture: DataTexture;
colorsTexture: DataTexture;
morphTexture: DataTexture;
boundingBox: Box3;
boundingSphere: Sphere;
instancesCount: number;
bvh: InstancedMeshBVH;
perObjectFrustumCulled: boolean;
sortObjects: boolean;
customSort: any;
raycastOnlyFrustum: boolean;
visibilityArray: boolean[];
customDepthMaterial: MeshDepthMaterial;
customDistanceMaterial: MeshDistanceMaterial;
get count(): number;
get maxCount(): number;
get material(): TMaterial;
set material(value: TMaterial);
/** THIS MATERIAL AND GEOMETRY CANNOT BE SHARED */
constructor(renderer: WebGLRenderer, count: number, geometry: TGeometry, material?: TMaterial);
updateInstances(onUpdate: UpdateEntityCallback<Entity<TCustomData>>): void;
createInstances(onInstanceCreation?: UpdateEntityCallback<Entity<TCustomData>>): void;
computeBVH(config?: BVHParams): void;
disposeBVH(): void;
setMatrixAt(id: number, matrix: Matrix4): void;
getMatrixAt(id: number, matrix?: Matrix4): Matrix4;
setVisibilityAt(id: number, visible: boolean): void;
getVisibilityAt(id: number): boolean;
setColorAt(id: number, color: ColorRepresentation): void;
getColorAt(id: number, color?: Color): Color;
setUniformAt(id: number, name: string, value: UniformValue): void;
getMorphAt(index: number, object: Mesh): void;
setMorphAt(index: number, object: Mesh): void;
raycast(raycaster: Raycaster, result: Intersection[]): void;
computeBoundingBox(): void;
computeBoundingSphere(): void;
copy(source: InstancedMesh2, recursive?: boolean): this;
dispose(): this;
}
InstancedEntity
export type UniformValueNoNumber = Vector2 | Vector3 | Vector4 | Matrix3 | Matrix4;
export type UniformValue = number | UniformValueNoNumber;
export declare class InstancedEntity {
isInstanceEntity: true;
readonly id: number;
readonly owner: InstancedMesh2;
position: Vector3;
scale: Vector3;
quaternion: Quaternion;
get visible(): boolean;
set visible(value: boolean);
get color(): Color;
set color(value: ColorRepresentation);
get matrix(): Matrix4;
get matrixWorld(): Matrix4;
constructor(owner: InstancedMesh2<any, any, any>, index: number);
updateMatrix(): void;
setUniform(name: string, value: UniformValue): void;
copyTo(target: Mesh): void;
applyMatrix4(m: Matrix4): this;
applyQuaternion(q: Quaternion): this;
rotateOnAxis(axis: Vector3, angle: number): this;
rotateOnWorldAxis(axis: Vector3, angle: number): this;
rotateX(angle: number): this;
rotateY(angle: number): this;
rotateZ(angle: number): this;
translateOnAxis(axis: Vector3, distance: number): this;
translateX(distance: number): this;
translateY(distance: number): this;
translateZ(distance: number): this;
}
Utils
export declare function patchShader(shader: string): string;
export declare function createRadixSort(target: InstancedMesh2): typeof radixSort<InstancedRenderItem>;
export declare function createTexture_float(count: number): DataTexture;
export declare function createTexture_vec2(count: number): DataTexture;
export declare function createTexture_vec3(count: number): DataTexture;
export declare function createTexture_vec4(count: number): DataTexture;
export declare function createTexture_mat3(count: number): DataTexture;
export declare function createTexture_mat4(count: number): DataTexture;
It works similarly to BatchedMesh
: matrices, colors, etc. are stored in Texture
instead of InstancedAttribute
.
The only InstancedAttribute
is used to store the indices of the instances to be rendered.
If you create a custom material, you will need to use Texture
instead of InstancedBufferAttribute
(don't worry, there are utility methods).
You can install it via npm using the following command:
npm install @three.ez/instanced-mesh
Or you can import it from CDN:
<script type="importmap">
{
"imports": {
"three": "https://cdn.jsdelivr.net/npm/three/build/three.module.js",
"three/addons/": "https://cdn.jsdelivr.net/npm/three/examples/jsm/",
"@three.ez/instanced-mesh": "https://cdn.jsdelivr.net/npm/@three.ez/instanced-mesh/build/index.js",
"bvh.js": "https://cdn.jsdelivr.net/npm/bvh.js/build/index.js"
}
}
</script>