A python code to simulate plasma particles using Molecular Dynamics Algorithm. Numba JIT compiler for Python has been implemented for faster performance.
A detailed documentation can be found at https://ppdyn.readthedocs.io/.
Example:
- Sayan Adhikari, UiO, Norway. @sayanadhikari
- Rupak Mukherjee, PPPL, USA.
- Gaute Holen, UiO, Norway (See separate branch, [dust-exp])
- Rinku Mishra, IPR, India (See separate branch, [dust-void])
First make a clone of the master branch using the following command
git clone https://github.com/sayanadhikari/PPDyn.git
Then enter inside the PPDyn directory
cd PPDyn
Now create a conda environment using the given environment.yml file
conda env create -f environment.yml
Activate the conda environment
conda activate ppdyn
Usage
Upon successful compilation, run the code using following command
python ppdyn.py -i input.ini
pip install PPDyn
Usage
Download the input template to your working directory
wget https://raw.githubusercontent.com/sayanadhikari/PPDyn/main/input.ini
Now, either create a python script in your working directory or use your python console
from PPDyn import ppdyn
from PPDyn.ppdplot import animate
import time
start = time.time()
ppdyn(input)
end = time.time()
print("Elapsed (after compilation) = %s"%(end - start)+" seconds")
animate()
First make a clone of the master branch using the following command
git clone https://github.com/sayanadhikari/PPDyn.git
Then enter inside the PPDyn directory
cd PPDyn
Now complile and built the PPDyn code
make all
Usage
Upon successful compilation, run the code using following command
ppdyn -i input.ini
Edit the input.ini and run the code again. The basic structure of input.ini is provided below,
;
; @file input.ini
; @brief PPDyn inputfile.
;
;scope = default
[simbox]
Lx = 15.0 ; System length in X
Ly = 15.0 ; System length in Y
Lz = 20.0 ; System length in Z
[particles]
N = 1000 ; Number of particles
Vxmax = 1.0 ; Maximum velocity in X
Vymax = 1.0 ; Maximum velocity in Y
Vzmax = 1.0 ; Maximum velocity in Z
Temp = 0.1 ;
dist = True ; Use distribution: True
mean = 1 ; if dist = True
stdDev = 0.2 ; if dist = True
[screening]
k = 0.0
[gravity]
g_0= 0.0063; Reduced Earth's gravity
[cutoff radius]
rc = 1e-5
[boundary]
btype = mixed ; Type of boundary Options: periodic, reflecting, mixed
[time]
tmax = 10.0 ; Final time
dt = 0.010 ; time step size
[diagnostics]
dumpPeriod = 5 ; Data dump period
dumpData = True
vtkData = True
realTime = False
[directory]
dataDir = data #put runname here
[options]
parallelMode = True ;True ;set to false to disable parallel
For visualization, user either can use the python scripts available inside scripts
directory or can write their own. After successful run the data will be available under data
directory. Two different data formats are available at present. The complete dataset will available under the name particle.hdf5. For vtk visualization users can use .vtu
files inside data/vtkdata
. Paraview can be used to animate particle dynamics very easily. A sample video can be found here.
We welcome contributions to this project.
- Fork it.
- Create your feature branch (
git checkout -b my-new-feature
). - Commit your changes (
git commit -am 'Add some feature'
). - Push to the branch (
git push origin my-new-feature
). - Create new Pull Request.
Released under the MIT license.