-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'require-chopper-name' of github.com:scipp/tof into requ…
…ire-chopper-name
- Loading branch information
Showing
2 changed files
with
386 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,3 +5,4 @@ ESS instruments | |
:maxdepth: 2 | ||
|
||
dream | ||
odin |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,385 @@ | ||
{ | ||
"cells": [ | ||
{ | ||
"cell_type": "markdown", | ||
"id": "0", | ||
"metadata": {}, | ||
"source": [ | ||
"# ODIN in WFM mode\n", | ||
"\n", | ||
"This is a simulation of the ODIN chopper cascade in WFM mode.\n", | ||
"We also show how one can convert the neutron arrival times at the detector to wavelength." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "1", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import numpy as np\n", | ||
"import scipp as sc\n", | ||
"import plopp as pp\n", | ||
"import tof\n", | ||
"\n", | ||
"Hz = sc.Unit(\"Hz\")\n", | ||
"deg = sc.Unit(\"deg\")\n", | ||
"meter = sc.Unit(\"m\")" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "2", | ||
"metadata": {}, | ||
"source": [ | ||
"## Create a source pulse\n", | ||
"\n", | ||
"We first create a source with 4 pulses containing 800,000 neutrons each,\n", | ||
"and whose distribution follows the ESS time and wavelength profiles (both thermal and cold neutrons are included)." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "3", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"source = tof.Source(facility=\"ess\", neutrons=500_000, pulses=4)\n", | ||
"source.plot()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "4", | ||
"metadata": {}, | ||
"source": [ | ||
"## Component set-up\n", | ||
"\n", | ||
"### Choppers\n", | ||
"\n", | ||
"The ODIN chopper cascade consists of:\n", | ||
"\n", | ||
"- 2 WFM choppers\n", | ||
"- 5 frame-overlap choppers\n", | ||
"- 2 band-control choppers\n", | ||
"- 1 T0 chopper" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "5", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"parameters = {\n", | ||
" \"WFMC_1\": {\n", | ||
" \"frequency\": 56.0,\n", | ||
" \"phase\": 93.244,\n", | ||
" \"distance\": 6.85,\n", | ||
" \"open\": [-1.9419, 49.5756, 98.9315, 146.2165, 191.5176, 234.9179],\n", | ||
" \"close\": [1.9419, 55.7157, 107.2332, 156.5891, 203.8741, 249.1752]\n", | ||
" },\n", | ||
" \"WFMC_2\": {\n", | ||
" \"frequency\": 56.0,\n", | ||
" \"phase\": 97.128,\n", | ||
" \"distance\": 7.15,\n", | ||
" \"open\": [-1.9419, 51.8318, 103.3493, 152.7052, 199.9903, 245.2914],\n", | ||
" \"close\": [1.9419, 57.9719, 111.6510, 163.0778, 212.3468, 259.5486]\n", | ||
" },\n", | ||
" \"FOC_1\": {\n", | ||
" \"frequency\": 42.0,\n", | ||
" \"phase\": 81.303297,\n", | ||
" \"distance\": 8.4,\n", | ||
" \"open\": [-5.1362, 42.5536, 88.2425, 132.0144, 173.9497, 216.7867],\n", | ||
" \"close\": [5.1362, 54.2095, 101.2237, 146.2653, 189.417, 230.7582]\n", | ||
" },\n", | ||
" \"BP_1\": {\n", | ||
" \"frequency\": 7.0,\n", | ||
" \"phase\": 31.080,\n", | ||
" \"distance\": 8.45,\n", | ||
" \"open\": [-23.6029],\n", | ||
" \"close\": [23.6029]\n", | ||
" },\n", | ||
" \"FOC_2\": {\n", | ||
" \"frequency\": 42.0,\n", | ||
" \"phase\": 107.013442,\n", | ||
" \"distance\": 12.2,\n", | ||
" \"open\": [-16.3227, 53.7401, 120.8633, 185.1701, 246.7787, 307.0165],\n", | ||
" \"close\": [16.3227, 86.8303, 154.3794, 218.7551, 280.7508, 340.3188]\n", | ||
" },\n", | ||
" \"BP_2\": {\n", | ||
" \"frequency\": 7.0,\n", | ||
" \"phase\": 44.224,\n", | ||
" \"distance\": 12.25,\n", | ||
" \"open\": [-34.4663],\n", | ||
" \"close\": [34.4663]\n", | ||
" },\n", | ||
" \"T0_alpha\": {\n", | ||
" \"frequency\": 14.0,\n", | ||
" \"phase\": 179.672,\n", | ||
" \"distance\": 13.5,\n", | ||
" \"open\": [-167.8986],\n", | ||
" \"close\": [167.8986]\n", | ||
" },\n", | ||
" \"T0_beta\": {\n", | ||
" \"frequency\": 14.0,\n", | ||
" \"phase\": 179.672,\n", | ||
" \"distance\": 13.7,\n", | ||
" \"open\": [-167.8986],\n", | ||
" \"close\": [167.8986]\n", | ||
" },\n", | ||
" \"FOC_3\": {\n", | ||
" \"frequency\": 28.0,\n", | ||
" \"phase\": 92.993,\n", | ||
" \"distance\": 17.0,\n", | ||
" \"open\": [-20.302, 45.247, 108.0457, 168.2095, 225.8489, 282.2199],\n", | ||
" \"close\": [20.302, 85.357, 147.6824, 207.3927, 264.5977, 319.4024]\n", | ||
" },\n", | ||
" \"FOC_4\": {\n", | ||
" \"frequency\": 14.0,\n", | ||
" \"phase\": 61.584,\n", | ||
" \"distance\": 23.69,\n", | ||
" \"open\": [-16.7157, 29.1882, 73.1661, 115.2988, 155.6636, 195.5254],\n", | ||
" \"close\": [16.7157, 61.8217, 105.0352, 146.4355, 186.0987, 224.0978]\n", | ||
" },\n", | ||
" \"FOC_5\": {\n", | ||
" \"frequency\": 14.0,\n", | ||
" \"phase\": 82.581,\n", | ||
" \"distance\": 33.0,\n", | ||
" \"open\": [-25.8514, 38.3239, 99.8064, 160.1254, 217.4321, 272.5426],\n", | ||
" \"close\": [25.8514, 88.4621, 147.4729, 204.0245, 257.7603, 313.7139]\n", | ||
" },\n", | ||
"\n", | ||
"}\n", | ||
"\n", | ||
"choppers = [\n", | ||
" tof.Chopper(\n", | ||
" frequency=ch[\"frequency\"] * Hz,\n", | ||
" direction=tof.Clockwise,\n", | ||
" open=sc.array(dims=[\"cutout\"], values=ch[\"open\"], unit=\"deg\"),\n", | ||
" close=sc.array(dims=[\"cutout\"], values=ch[\"close\"], unit=\"deg\"),\n", | ||
" phase=ch[\"phase\"] * deg,\n", | ||
" distance=ch[\"distance\"] * meter,\n", | ||
" name=key,\n", | ||
" )\n", | ||
" for key, ch in parameters.items()\n", | ||
"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "6", | ||
"metadata": {}, | ||
"source": [ | ||
"### Detector\n", | ||
"\n", | ||
"ODIN has a single detector panel 60.5 meters from the source." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "7", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"detectors = [\n", | ||
" tof.Detector(distance=60.5 * meter, name=\"detector\"),\n", | ||
"]" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "8", | ||
"metadata": {}, | ||
"source": [ | ||
"## Run the simulation\n", | ||
"\n", | ||
"We propagate our pulse of neutrons through the chopper cascade and inspect the results." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "9", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"model = tof.Model(source=source, choppers=choppers, detectors=detectors)\n", | ||
"results = model.run()\n", | ||
"results.plot(blocked_rays=5000)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "10", | ||
"metadata": {}, | ||
"source": [ | ||
"We can see that the chopper cascade is implementing WFM and pulse-skipping at the same time!\n", | ||
"\n", | ||
"## Wavelength as a function of time-of-arrival\n", | ||
"\n", | ||
"### Plotting wavelength vs time-of-arrival\n", | ||
"\n", | ||
"Since we know the true wavelength of our neutrons,\n", | ||
"as well as the time at which the neutrons arrive at the detector\n", | ||
"(coordinate named `toa` in the detector reading),\n", | ||
"we can plot an image of the wavelengths as a function of time-of-arrival:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "11", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"# Squeeze the pulse dimension since we only have one pulse\n", | ||
"events = results['detector'].data.flatten(to='event')\n", | ||
"# Remove the events that don't make it to the detector\n", | ||
"events = events[~events.masks['blocked_by_others']]\n", | ||
"# Histogram and plot\n", | ||
"events.hist(wavelength=500, toa=500).plot(norm='log', grid=True)" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "12", | ||
"metadata": {}, | ||
"source": [ | ||
"### Defining a conversion from `toa` to `wavelength`\n", | ||
"\n", | ||
"The image above shows that there is a pretty tight correlation between time-of-arrival and wavelength.\n", | ||
"\n", | ||
"We compute the mean wavelength inside a given `toa` bin to define a relation between `toa` and `wavelength`." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "13", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"binned = events.bin(toa=500)\n", | ||
"\n", | ||
"# Weighted mean of wavelength inside each bin\n", | ||
"mu = (\n", | ||
" binned.bins.data * binned.bins.coords['wavelength']\n", | ||
").bins.sum() / binned.bins.sum()\n", | ||
"\n", | ||
"# Variance of wavelengths inside each bin\n", | ||
"var = (\n", | ||
" binned.bins.data * (binned.bins.coords['wavelength'] - mu) ** 2\n", | ||
") / binned.bins.sum()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "14", | ||
"metadata": {}, | ||
"source": [ | ||
"We can now overlay our mean wavelength function on the image above:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "15", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"import matplotlib.pyplot as plt\n", | ||
"\n", | ||
"fig, ax = plt.subplots(2, 1)\n", | ||
"\n", | ||
"f = events.hist(wavelength=500, tof=500).plot(norm='log', cbar=False, ax=ax[0])\n", | ||
"mu.name = 'Wavelength'\n", | ||
"mu.plot(ax=ax[0], color='C1', grid=True)\n", | ||
"stddev = sc.sqrt(var.hist())\n", | ||
"stddev.name = 'Standard deviation'\n", | ||
"stddev.plot(ax=ax[1], grid=True)\n", | ||
"fig.set_size_inches(6, 8)\n", | ||
"fig.tight_layout()" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "16", | ||
"metadata": {}, | ||
"source": [ | ||
"## Computing wavelengths\n", | ||
"\n", | ||
"We set up an interpolator that will compute wavelengths given an array of `toas`." | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "17", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"from scipp.scipy.interpolate import interp1d\n", | ||
"\n", | ||
"# Set up interpolator\n", | ||
"y = mu.copy()\n", | ||
"y.coords['toa'] = sc.midpoints(y.coords['toa'])\n", | ||
"f = interp1d(y, 'toa', bounds_error=False)\n", | ||
"\n", | ||
"# Compute wavelengths\n", | ||
"wavs = f(events.coords['toa'].rename_dims(event='toa'))\n", | ||
"wavelengths = sc.DataArray(\n", | ||
" data=sc.ones(sizes=wavs.sizes, unit='counts'), coords={'wavelength': wavs.data}\n", | ||
").rename_dims(toa='event')\n", | ||
"wavelengths" | ||
] | ||
}, | ||
{ | ||
"cell_type": "markdown", | ||
"id": "18", | ||
"metadata": {}, | ||
"source": [ | ||
"We can now compare our computed wavelengths to the true wavelengths of the neutrons:" | ||
] | ||
}, | ||
{ | ||
"cell_type": "code", | ||
"execution_count": null, | ||
"id": "19", | ||
"metadata": {}, | ||
"outputs": [], | ||
"source": [ | ||
"pp.plot(\n", | ||
" {\n", | ||
" 'wfm': wavelengths.hist(wavelength=300),\n", | ||
" 'original': events.hist(wavelength=300),\n", | ||
" }\n", | ||
")" | ||
] | ||
} | ||
], | ||
"metadata": { | ||
"kernelspec": { | ||
"display_name": "Python 3 (ipykernel)", | ||
"language": "python", | ||
"name": "python3" | ||
}, | ||
"language_info": { | ||
"codemirror_mode": { | ||
"name": "ipython", | ||
"version": 3 | ||
}, | ||
"file_extension": ".py", | ||
"mimetype": "text/x-python", | ||
"name": "python", | ||
"nbconvert_exporter": "python", | ||
"pygments_lexer": "ipython3" | ||
} | ||
}, | ||
"nbformat": 4, | ||
"nbformat_minor": 5 | ||
} |