Skip to content

Commit

Permalink
Fix formatting
Browse files Browse the repository at this point in the history
  • Loading branch information
fealho committed Nov 20, 2024
1 parent 835283a commit c8039a4
Show file tree
Hide file tree
Showing 2 changed files with 61 additions and 52 deletions.
111 changes: 59 additions & 52 deletions sdmetrics/column_pairs/statistical/inter_row_msas.py
Original file line number Diff line number Diff line change
Expand Up @@ -29,7 +29,61 @@ class InterRowMSAS:
max_value = 1.0

@staticmethod
def compute(real_data, synthetic_data, n_rows_diff=1, apply_log=False):
def _validate_inputs(real_data, synthetic_data, n_rows_diff, apply_log):
for data in [real_data, synthetic_data]:
if (
not isinstance(data, tuple)
or len(data) != 2
or (not (isinstance(data[0], pd.Series) and isinstance(data[1], pd.Series)))
):
raise ValueError('The data must be a tuple of two pandas series.')

if not isinstance(n_rows_diff, int) or n_rows_diff < 1:
raise ValueError("'n_rows_diff' must be an integer greater than zero.")

if not isinstance(apply_log, bool):
raise ValueError("'apply_log' must be a boolean.")

@staticmethod
def _apply_log(real_values, synthetic_values, apply_log):
if apply_log:
num_invalid = sum(x <= 0 for x in pd.concat((real_values, synthetic_values)))
if num_invalid:
warnings.warn(
f'There are {num_invalid} non-positive values in your data, which cannot be '
"used with log. Consider changing 'apply_log' to False for a better result."
)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='.*encountered in log')
real_values = np.log(real_values)
synthetic_values = np.log(synthetic_values)

return real_values, synthetic_values

@staticmethod
def _calculate_differences(keys, values, n_rows_diff, data_name):
grouped = values.groupby(keys)
group_sizes = grouped.size()

num_invalid_groups = len(group_sizes[group_sizes <= n_rows_diff])
if num_invalid_groups > 0:
warnings.warn(
f"n_rows_diff '{n_rows_diff}' is greater than the "
f'size of {num_invalid_groups} sequence keys in {data_name}.'
)

def diff_func(group):
if len(group) <= n_rows_diff:
return np.nan
group = group.to_numpy()
return np.mean(group[n_rows_diff:] - group[:-n_rows_diff])

with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='invalid value encountered in.*')
return grouped.apply(diff_func)

@classmethod
def compute(cls, real_data, synthetic_data, n_rows_diff=1, apply_log=False):
"""Compute this metric.
This metric compares the inter-row differences of sequences in the real data
Expand Down Expand Up @@ -58,60 +112,13 @@ def compute(real_data, synthetic_data, n_rows_diff=1, apply_log=False):
float:
The similarity score between the real and synthetic data distributions.
"""
for data in [real_data, synthetic_data]:
if (
not isinstance(data, tuple)
or len(data) != 2
or (not (isinstance(data[0], pd.Series) and isinstance(data[1], pd.Series)))
):
raise ValueError('The data must be a tuple of two pandas series.')

if not isinstance(n_rows_diff, int) or n_rows_diff < 1:
raise ValueError("'n_rows_diff' must be an integer greater than zero.")

if not isinstance(apply_log, bool):
raise ValueError("'apply_log' must be a boolean.")

cls._validate_inputs(real_data, synthetic_data, n_rows_diff, apply_log)
real_keys, real_values = real_data
synthetic_keys, synthetic_values = synthetic_data
real_values, synthetic_values = cls._apply_log(real_values, synthetic_values, apply_log)

if apply_log:
num_invalid = sum(x <= 0 for x in pd.concat((real_values, synthetic_values)))
if num_invalid:
warnings.warn(
f'There are {num_invalid} non-positive values in your data, which cannot be '
"used with log. Consider changing 'apply_log' to False for a better result."
)
with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='divide by zero encountered in log')
warnings.filterwarnings('ignore', message='invalid value encountered in log')
real_values = np.log(real_values)
synthetic_values = np.log(synthetic_values)

def calculate_differences(keys, values, n_rows_diff, data_name):
group_sizes = values.groupby(keys).size()
num_invalid_groups = group_sizes[group_sizes <= n_rows_diff].count()
if num_invalid_groups > 0:
warnings.warn(
f"n_rows_diff '{n_rows_diff}' is greater than the "
f'size of {num_invalid_groups} sequence keys in {data_name}.'
)

with warnings.catch_warnings():
warnings.filterwarnings('ignore', message='invalid value encountered in subtract')
warnings.filterwarnings('ignore', message='invalid value encountered in reduce')
differences = values.groupby(keys).apply(
lambda group: np.mean(
group.to_numpy()[n_rows_diff:] - group.to_numpy()[:-n_rows_diff]
)
if len(group) > n_rows_diff
else np.nan
)

return pd.Series(differences)

real_diff = calculate_differences(real_keys, real_values, n_rows_diff, 'real_data')
synthetic_diff = calculate_differences(
real_diff = cls._calculate_differences(real_keys, real_values, n_rows_diff, 'real_data')
synthetic_diff = cls._calculate_differences(
synthetic_keys, synthetic_values, n_rows_diff, 'synthetic_data'
)

Expand Down
2 changes: 2 additions & 0 deletions sdmetrics/single_column/statistical/kscomplement.py
Original file line number Diff line number Diff line change
Expand Up @@ -57,6 +57,8 @@ def compute(real_data, synthetic_data):
real_data = pd.to_numeric(real_data)
synthetic_data = pd.to_numeric(synthetic_data)

real_data.round()
synthetic_data.round()
try:
statistic, _ = ks_2samp(real_data, synthetic_data)
except ValueError as e:
Expand Down

0 comments on commit c8039a4

Please sign in to comment.