Skip to content

Commit

Permalink
fix: zeromorph typos
Browse files Browse the repository at this point in the history
  • Loading branch information
wfnuser authored and gy001 committed Jan 15, 2025
1 parent 7936712 commit 475277c
Show file tree
Hide file tree
Showing 2 changed files with 4 additions and 4 deletions.
4 changes: 2 additions & 2 deletions zeromorph/zeromorph.md
Original file line number Diff line number Diff line change
Expand Up @@ -204,7 +204,7 @@ Similarly, the values of $\tilde{c}$ on a four-dimensional HyperCube are $(v_0,

$$
\begin{split}
[[\tilde{c}]]_4 &= v_0 + v_1X + v_2X^2 + v_3X^3 + v_0X^4 + v_1X^5 + v_2X^6 + v_3X^7 \\
[[\tilde{c}]]_4 &= v_0 + v_1X + v_2X^2 + v_3X^3 + v_0X^4 + v_1X^5 + v_2X^6 + v_3X^7 + v_0X^8 + v_1X^9 + v_2X^{10} + v_3X^{11} + v_0X^{12} + v_1X^{13} + v_2X^{14} + v_3X^{15} \\
& = (1 + X^4 + X^8 + X^{12})\cdot (v_0 + v_1X + v_2X^2 + v_3X^3) \\
& = (1 + X^4 + X^8 + X^{12})\cdot [[\tilde{c}]]_2
\end{split}
Expand Down Expand Up @@ -279,7 +279,7 @@ $$
First, look at the term $[[\tilde{f}(X_0,X_1,\ldots, X_{n-1})]]_n$ on the left side of the equation, which directly maps to $\hat{f}(X)$. Then look at the term $[[v]]_n$, which maps to $\hat{v}(X)$,

$$
[[v]]_n = \hat{v}(X) = v + vX + vX^2 + \ldots + vX^{n-1}
[[v]]_n = \hat{v}(X) = v + vX + vX^2 + \ldots + vX^{2^n-1}
$$

Or we can use the $\Phi_n(X)$ function to represent it:
Expand Down
4 changes: 2 additions & 2 deletions zeromorph/zeromorph.zh.md
Original file line number Diff line number Diff line change
Expand Up @@ -205,7 +205,7 @@ $$

$$
\begin{split}
[[\tilde{c}]]_4 &= v_0 + v_1X + v_2X^2 + v_3X^3 + v_0X^4 + v_1X^5 + v_2X^6 + v_3X^7 \\
[[\tilde{c}]]_4 &= v_0 + v_1X + v_2X^2 + v_3X^3 + v_0X^4 + v_1X^5 + v_2X^6 + v_3X^7 + v_0X^8 + v_1X^9 + v_2X^{10} + v_3X^{11} + v_0X^{12} + v_1X^{13} + v_2X^{14} + v_3X^{15} \\
& = (1 + X^4 + X^8 + X^{12})\cdot (v_0 + v_1X + v_2X^2 + v_3X^3) \\
& = (1 + X^4 + X^8 + X^{12})\cdot [[\tilde{c}]]_2
\end{split}
Expand Down Expand Up @@ -275,7 +275,7 @@ $$
先看等式左边的 $[[\tilde{f}(X_0,X_1,\ldots, X_{n-1})]]_n$ 这一项直接映射到 $\hat{f}(X)$,再看 $[[v]]_n$ 这一项,它映射到 $\hat{v}(X)$,

$$
[[v]]_n = \hat{v}(X) = v + vX + vX^2 + \ldots + vX^{n-1}
[[v]]_n = \hat{v}(X) = v + vX + vX^2 + \ldots + vX^{2^n-1}
$$

或者我们改用 $\Phi_n(X)$ 函数来表示:
Expand Down

0 comments on commit 475277c

Please sign in to comment.