Skip to content

seungjun-Park/Pytorch-Implmentation-of-Deformable-Convolution-Nd

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

94 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Pytorch-Implmentation-of-Deformable-Convolution-Nd

Supporting N-dimensional deformable convolution

Original implementation:
DCNV2
DCNV4

Model example: please see here

Support

  • fp16. (cuda compute capability >= 7.0 && only gpu available, but when use fp16, it often occurs over/underflow problem. please use bfp16 instead.)
  • bfp16. (cuda compute capability >= 8.0)
  • torch.no_grad(). (enable gradient checkpointing)
  • torch.autocast(). (enable pytorch AMP system)
  • torch.autograd(). (just called function. do not need any additional implement.)
  • 1d ~ 3d implement. (if you want to use over 3d, you just add dimension which you wanted TORCH_LIBRARY_IMPL in deform_conv.cpp, deform_conv_cpu.cpp and deform_conv_cuda.cu)
  • channels last memory format.

Papers

Requirements

  • Pytorch
  • CudaToolkit
  • Python
  • Ninja (Optional for fast build)

Test environments

  • OS: Windows10 with MSVC / Ubuntu 20.04.6 LTS with gcc
  • GPU: NVIDA 3070TI 8G in Windows10 / NVIDIA A5000 24G in Ubuntu
  • C++: std 17
  • C: std 14
  • Python: 3.10
  • Pytorch: 2.1.0 / 2.4.0
  • CudaToolkit: 11.8 / 12.4

Build

(Optional) conda activate {your envirionment name}
python setup.py build install

DOC

Example

import torch
import torch.nn as nn
from deform_conv import DeformConv2d

device = 'cuda' if torch.cuda.is_available() else 'cpu'
dtype = torch.bfloat16

inputs = torch.randn(2, 384, 64, 64).to(device)

deform_conv_layer = DeformConv2d(
    in_channels=384,
    out_channels=128,
    kernel_size=3,
    stride=1,
    padding=1,
    dilation=1,
    groups=8,
    deformable_groups_per_groups=2,
    bias=True
).to(device)

with torch.autocast(device_type=device, dtype=dtype):
    output = deform_conv_layer(inputs)

print(output)
"""
result is 
 1 2 3 4 ..... each values
 ...    ....     ........
 
 device='cuda: 0', dtype=torch.bfloat16,
 grad_fn=<CppNode<class DeformConvNdFunction<2>>>)
 DeformConvNdFunction located at src/deform_conv.cpp
"""

Reference

About

supporting N-dimensional deformable convolution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published