This code allows one to do optimized parameter sweeps for Quantum Computing/Information experiments using systems integrated through Labber API
graph LR
B("class MeasurementOptimizer");
D[Optimization Parameter];
A[Input Parameter 1] ----> B;
C[Input Parameter 2] ----> B;
D ---> B;
subgraph "MeasurementOptimizer.py"
B--> E{Is the Optimization Parameter a Derived Quantity};
E -->|Yes| F[Case 1];
E -->|No| G[Case 2];
F --> B;
G --> B;
end
The program would require the following inputs:
- 2 parameters, their config. with Labber, and bounds to form the search space
- 1 parameter, its qualifier (
isDerivedQuant: bool
), and associated config. to optimize over - hyper-parameters for optimization
Example:
from MeasurementOptimizer import *
MeasurementOptimizer()
- study James' code
- methods to deal with generalized output optimization
- obj code verification
- save data
- implement SNR optimization
- test
- toy
- with system
- document
- 3 param opt.