- for training,
# You want to train FixMatch using single gpu.
python train.py --use_gpu 0 --number_of_labels 40
python train.py --use_gpu 1 --number_of_labels 250
python train.py --use_gpu 2 --number_of_labels 4000
# You want to train FixMatch using multiple gpus.
python train.py --use_gpu 0,1,2,3 --number_of_labels 40
python train.py --use_gpu 0,1,2,3 --number_of_labels 250
python train.py --use_gpu 0,1,2,3 --number_of_labels 4000
- random seed is 0.
The number of labels | 40 | 250 | 4000 |
---|---|---|---|
Official implementation (with RA) | 86.19 ± 3.37 | 94.93 ± 0.65 | 95.74 ± 0.05 |
My implementation (with RA) | 92.39 | 95.14 | 95.62 |
- Official Tensorflow implementation of "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence" (google-research/fixmatch) [Code]
- Unofficial PyTorch implementation of "FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence" [Code]
- FixMatch: Simplifying Semi-Supervised Learning with Consistency and Confidence [Paper]