Udacity Free Course인 Intro-to-Deep-Learning-with-PyTorch 과정을 진행하면서 발생되는 소스코드나 학습내용들을 기록하기 위해 만들었습니다.
Secure and Private AI Scholarship에 선발되어 해당 내용과 유사한 Nanodegree 프로그램을 진행하기 때문에 해당 Repository는 더 이상 업데이트 되지 않습니다.
Bertelsmann Scholarship 프로그램이 위와 비슷한 커리큘럼을 가지고 있어 해당 Repository에 기록.
- 2019-01-01
- Lesson 2-10 (Perceptron-Algorithm)
- 2019-01-02
- Lesson 2-17 (Maximum-Likelihood)
- 2019-01-03
- Lesson 2-20 (Cross-Entropy 2)
- 2019-01-05
- Lesson 2-26 (Gradient-Descent)
- 2019-01-06
- Lesson 2-35 (Analyzing-Student-Data)
- 2019-01-07
- Lesson 2-50 (Error-Functions)
Lesson2 Finish
- Lesson 2-50 (Error-Functions)
- 2019-01-08
- Lesson 4-2 (Single-Layer-Neural-Networks)
Lesson3 Finish
- Lesson 4-2 (Single-Layer-Neural-Networks)
- 2019-01-09 ~ 2019-01-12
- Review & Read a Book (
Deep Learning from Scratch
)
- Review & Read a Book (
- 2019-01-13
- Lesson 4-10 (Network-Architectures Solution)
- 2019-01-14
- Lesson 4-22
Lesson4 Finsih
- Lesson 4-22
- 2019-01-15
- Review
- 2019-01-16
- Review
- 2019-01-17
- Back to Lesson 4-9 (I don't understand)
- 2019-01-21
- Repeat Lesson 4-10
- 2019-01-22
- Repeat Lesson 4-11
- 2019-01-23
- Repeat Lesson 4-13
- 2019-01-24
- Making Test Data-Set
- 2019-01-26
- Finish My Own Data-Set
- 2019-01-28
- Repeat Lesson 4-16
- 2019-01-29
- Repeat Lesson 4-19
- 2019-01-30
- Implementing Classify Dog-vs-Cat
- 2019-01-31
- Still doing(Implementing...)
- 2019-02-01
- Implement Dog-vs-Cat (accuracy - 0.5)
- 2019-02-02
- Change Model for Accuracy
- 2019-02-07
- Doing Part8
- 2019-02-08
Lesson4 Finish
- 2019-02-09
- New Setting for CUDA
- 2019-02-20
- Temporarily suspend for important projects. (Until 2019-03-01)
- 2019-03-08
- MLP Structure & Class Score
- 2019-03-10
- Change Anaconda Env for New GPU
- 2019-03-11
- Loss & Optimize
- 2019-03-12
- Training the Network
- 2019-03-13
- One Solution
- 2019-03-14
- Model Validation
- 2019-03-15
- Repeat Lesson 5-3
- 2019-03-16
- Repeat Lesson 5-5
- 2019-03-17
- Repeat Lesson 5-6
- 2019-03-18
- Repeat Lesson 5-8
- 2019-03-22
- Temporarily suspend for other study. (Until 2019-03-25)
- 2019-03-28
- Review
- 2019-03-29
- Review 2
- 2019-03-30
- Review 3
- 2019-03-31
- Validation Loss
- 2019-04-01
- Image Classification Steps
- 2019-04-02
- MLPs vs CNNs
- 2019-04-04
- Local Connectivity
- 2019-04-05
- Filters and the Convolutional Layer
- 2019-04-06
- Filters & Edges
- 2019-04-07
- Frequency in images
- 2019-04-08
- High-pass Filters
- Temporarily suspend for other project (Until Undetermined)
- 2019-04-16
- OpenCV & Creating Custom Filters
- 2019-04-17
- Convolutional
- 2019-05-12
- Stride & Padding
- 2019-05-14
- CNNs in PyTorch
- 2019-05-20
- Pooling Layers
- 2019-05-22
- Capsule Networks
- 2019-05-23
- Increasing Depth
- 2019-05-24
- CNNs for Image Classification
- 2019-05-25
- Convolutional Layers in PyTorch
- 2019-05-26
- Feature Vector
- 2019-05-27
- CIFAR Classification
- 2019-05-28
- Image Augmentation
- 2019-05-29
- Augmentation Using Transformations
- 2019-05-30
- Groundbreaking CNN Architectures
- 2019-05-31
- Visualizing CNNs
- 2019-06-01
- Summary of CNNs
- 2019-01-01
- perceptron-algorithm-quiz
- 2019-01-02
- softmax-function-quiz
- 2019-01-03
- cross-entropy-quiz
- 2019-01-05
- gradient-descent-algorithm
- 2019-01-06
- predicting-neural-network
- 2019-01-17
- Part1 (Lesson 4-1 ~ 4-4)
- Part2 (Lesson 4-5 ~ 4-8)
- 2019-01-22
- Part3 (Lesson 4-9 ~ 4-11)
- 2019-01-25
- Part4 (Lesson 4-12 ~ 4-13)
- 2019-01-27
- Data-Set
- 2019-01-28
- Part5 (Lesson 4-14 ~ 4-16)
- 2019-01-29
- Part6 (Lesson 4-17)
- Part7 (Lesson 4-18 ~ 4-19)
- 2019-02-01
- Dog-vs-Cat
- 2019-02-08
- Part8 (Without CUDA)