Rust port of extremely fast simdjson JSON parser with Serde compatibility.
simd-json is a Rust port of the simdjson c++ library. It follows most of the design closely with a few exceptions to make it better fit into the Rust ecosystem.
The goal of the Rust port of simdjson is not to create a one-to-one copy, but to integrate the principles of the C++ library into a Rust library that plays well with the Rust ecosystem. As such we provide both compatibility with Serde as well as parsing to a DOM to manipulate data.
As a rule of thumb this library tries to get as close as possible to the performance of the C++ implementation (currently tracking 0.2.x, work in progress). However, in some design decisions—such as parsing to a DOM or a tape—ergonomics is prioritized over performance. In other places Rust makes it harder to achieve the same level of performance.
To take advantage of this library your system needs to support SIMD instructions. On x86
, it will
select the best available supported instruction set (avx2
or sse4.2
) when the runtime-detection
feature
is enabled (default). On aarch64
this library uses the NEON
instruction set. On wasm
this library uses
the simd128
instruction set when available. When no supported SIMD instructions are found, this library will use a
fallback implementation, but this is significantly slower.
For best performance, we highly suggest using mimalloc or jemalloc instead of the system allocator used by default. Another recent allocator that works well (but we have yet to test it in production) is snmalloc.
simd-json
uses a lot of unsafe code.
There are a few reasons for this:
- SIMD intrinsics are inherently unsafe. These uses of unsafe are inescapable in a library such as
simd-json
. - We work around some performance bottlenecks imposed by safe rust. These are avoidable, but at a performance cost.
This is a more considered path in
simd-json
.
simd-json
goes through extra scrutiny for unsafe code. These steps are:
- Unit tests - to test 'the obvious' cases, edge cases, and regression cases
- Structural constructive property based testing - We generate random valid JSON objects to exercise the full
simd-json
codebase stochastically. Floats are currently excluded since slightly different parsing algorithms lead to slightly different results here. In short "is simd-json correct". - Data-oriented property-based testing of string-like data - to assert that sequences of legal printable characters don't panic or crash the parser (they might and often error so - they are not valid JSON!)
- Destructive Property based testing - make sure that no illegal byte sequences crash the parser in any way
- Fuzzing - fuzz based on upstream & jsonorg simd pass/fail cases
- Miri testing for UB
This doesn't ensure complete safety nor is at a bulletproof guarantee, but it does go a long way to assert that the library is of high production quality and fit for purpose for practical industrial applications.
Various features can be enabled or disabled to tweak various parts of this library. Any features not mentioned here are for internal configuration and testing.
This feature allows selecting the optimal algorithm based on available features during runtime. It has no effect on
non-x86
platforms. When neither AVX2
nor SSE4.2
is supported, it will fall back to a native Rust implementation.
Disabling this feature (with default-features = false
) and setting RUSTFLAGS="-C target-cpu=native
will result
in better performance but the resulting binary will not be portable across x86
processors.
Enable Serde support. This consist of implementing serde::Serializer
and serde::Deserializer
,
allowing types that implement serde::Serialize
/serde::Deserialize
to be constructed/serialized to
BorrowedValue
/OwnedValue
.
In addition, this provides the same convenience functions that serde_json
provides.
Disabling this feature (with default-features = false
) will remove serde
and serde_json
from the dependencies.
Enables a parsing method that will parse 8 digits at a time for floats. This is a common pattern but comes at a slight performance hit if most of the float have less than 8 digits.
The known-key
feature changes the hash mechanism for the DOM representation of the underlying JSON object from
ahash
to fxhash
. The ahash
hasher is faster at hashing and provides protection against DOS attacks by forcing
multiple keys into a single hashing bucket. The fxhash
hasher allows for repeatable hashing results,
which in turn allows memoizing hashes for well known keys and saving time on lookups. In workloads that are heavy on
accessing some well-known keys, this can be a performance advantage.
The known-key
feature is optional and disabled by default and should be explicitly configured.
This flag has no effect on simd-json itself but purely affects the Value
structs.
The value-no-dup-keys
feature flag enables stricter behavior for objects when deserializing into a Value
. When
enabled, the Value deserializer will remove duplicate keys in a JSON object and only keep the last one. If not set
duplicate keys are considered undefined behavior and Value will not make guarantees on its behavior.
The big-int-as-float
feature flag treats very large integers that won't fit into u64 as f64 floats. This prevents
parsing errors if the JSON you are parsing contains very large integers. Keep in mind that f64 loses some precision when
representing very large numbers.
Add support for parsing and serializing 128-bit integers. This feature is disabled by default because such large numbers are rare in the wild and adding the support incurs a performance penalty.
Enabling this feature can break dependencies in your dependency tree that are using simd-json
.
Replace std::borrow::Cow
with
beef::lean::Cow
This feature is disabled by default, because
it is a breaking change in the API.
By default the representation of Floats
used in borrowed::Value
and owned::Value
is simply a value of f64
.
This however has the normally-not-a-big-deal side effect of not having these Value
types be std::cmp::Eq
. This does,
however, introduce some incompatibilities when offering simd-json
as a quasi-drop-in replacement for serde-json
.
So, this feature changes the internal representation of Floats
to be an f64
wrapped by an Eq-compatible adapter.
This probably carries with it some small performance trade-offs, hence its enablement by feature rather than by default.
Currently disabled
An highly experimental implementation of the algorithm using std::simd
and up to 512 byte wide registers.
simd-json offers three main entry points for usage:
The values API is a set of optimized DOM objects that allow parsed
JSON to JSON data that has no known variable structure. simd-json
has two versions of this:
Borrowed Values
use simd_json;
let mut d = br#"{"some": ["key", "value", 2]}"#.to_vec();
let v: simd_json::BorrowedValue = simd_json::to_borrowed_value(&mut d).unwrap();
Owned Values
use simd_json;
let mut d = br#"{"some": ["key", "value", 2]}"#.to_vec();
let v: simd_json::OwnedValue = simd_json::to_owned_value(&mut d).unwrap();
use simd_json;
use serde_json::Value;
let mut d = br#"{"some": ["key", "value", 2]}"#.to_vec();
let v: Value = simd_json::serde::from_slice(&mut d).unwrap();
use simd_json;
let mut d = br#"{"the_answer": 42}"#.to_vec();
let tape = simd_json::to_tape(&mut d).unwrap();
let value = tape.as_value();
// try_get treats value like an object, returns Ok(Some(_)) because the key is found
assert!(value.try_get("the_answer").unwrap().unwrap() == 42);
// returns Ok(None) because the key is not found but value is an object
assert!(value.try_get("does_not_exist").unwrap() == None);
// try_get_idx treats value like an array, returns Err(_) because value is not an array
assert!(value.try_get_idx(0).is_err());
There are also bindings for upstream simdjson
available here
simd-json itself is licensed under either of
at your option.
However it ports a lot of code from simdjson so their work and copyright on that should also be respected.
The Serde integration is based on serde-json
so their copyright should as well be respected.