Skip to content

sirotenko/Fully-Connected-DenseNets-Semantic-Segmentation

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

21 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Fully Connected DenseNets for Semantic Segmentation

Fully Connected DenseNet for Image Segmentation implementation of the paper The One Hundred Layers Tiramisu : Fully Convolutional DenseNets for Semantic Segmentation

Differences

  • Use of SubPixelConvolution instead of Deconvolution as default method for Upsampling.

Usage :

Simply import the densenet_fc.py script and call the create method:

import densenet_fc as dc

model = DenseNetFCN((32, 32, 3), nb_dense_block=5, growth_rate=16,
                        nb_layers_per_block=4, upsampling_type='upsampling', classes=1)

Requirements

Keras 1.2.2 Theano (master branch) / Tensorflow 1.0+ h5py

About

Fully Connected DenseNet for Image Segmentation (https://arxiv.org/pdf/1611.09326v1.pdf)

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%