Skip to content

ENTERPRISE (Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE) is a pulsar timing analysis code, aimed at noise analysis, gravitational-wave searches, and timing model analysis.

License

Notifications You must be signed in to change notification settings

siyuan-chen/enterprise

 
 

Repository files navigation

enterprise

PyPI Conda (channel only) Build Status Documentation Status Test Coverage Python Versions

Zenodo DOI 4059815

ENTERPRISE (Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE) is a pulsar timing analysis code, aimed at noise analysis, gravitational-wave searches, and timing model analysis.

Installation

To install via pip, some non-python dependencies are required. See the libstempo and scikit-sparse documentation for more info on how to install these dependencies. Once these are installed, you can do

pip install enterprise-pulsar

To install via conda, simply do

conda install -c conda-forge enterprise-pulsar

Attribution

If you make use of this software, please cite it:

Ellis, J. A., Vallisneri, M., Taylor, S. R., & Baker, P. T. (2020, September 29). ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE (v3.0.0). Zenodo. http://doi.org/10.5281/zenodo.4059815


@misc{enterprise,
  author       = {Justin A. Ellis and Michele Vallisneri and Stephen R. Taylor and Paul T. Baker},
  title        = {ENTERPRISE: Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE},
  month        = sep,
  year         = 2020,
  howpublished = {Zenodo},
  doi          = {10.5281/zenodo.4059815},
  url          = {https://doi.org/10.5281/zenodo.4059815}
}

Credits

This package was created with Cookiecutter and the audreyr/cookiecutter-pypackage project template.

About

ENTERPRISE (Enhanced Numerical Toolbox Enabling a Robust PulsaR Inference SuitE) is a pulsar timing analysis code, aimed at noise analysis, gravitational-wave searches, and timing model analysis.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 87.8%
  • Jupyter Notebook 11.5%
  • Makefile 0.7%